项目名称: 可压缩多介质流体的真正多维高保真算法

项目编号: No.91530108

项目类型: 重大研究计划

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 王双虎

作者单位: 北京应用物理与计算数学研究所

项目金额: 25万元

中文摘要: 可压缩多介质流体具有多维、多介质、强压缩间断等特征,由于理论分析和实验研究的困难,数值模拟是研究这类问题的主要手段,然而由于缺乏可靠的理论分析和实验数据,而目前数值模拟方法的置信度又缺乏可靠验证,多介质大变形问题是一个长期研究而又进展不大的泥潭课题。发展真正多维的高保真算法,将是多介质大变形问题研究的一个关键所在。课题组将从真正多维的Riemann解子器入手,结合多介质流体的具体模型,认知多维非线性波和物质界面的物理机理,凝练实际应用中的多介质模型,构造能够克服非线性波数值不稳定性和界面数值震荡的真正多维的高保真算法。本项目研制能够有效模拟多介质大变形流动的高保真方法和程序,将能为实际工程问题提供有力的方法和程序支撑,有创新性和较高的应用价值。

中文关键词: 可压缩多介质流体;多维;高分辨率;黎曼解法器;

英文摘要: Compressible multi-fluid flows can be found in a variety of science and engineering problems, such as national economy and defense technology, and they are characterized by the interaction of shock waves and material interfaces in multidimensional space. Due to the difficulty of theoretical and experimental research, numerical simulation is playing a more and more important role, and more attention are paid on the fidelity of numerical methods. Development of numerically accurate and computationally efficient algorithms for multi-material flow simulations remains one of the unresolved issues in computational fluid dynamics. Dimensional splitting for multidimensional problems and flag variable for multi-fluid interfaces are two frequently used techniques for multidimensional flows with large deformations. However, fidelity of simulation is reasonable based on such techniques. Genuine multidimensional algorithms and suitable modeling based on physics will be the key points of simulation for multi-fluid flows with large deformation. The interaction between nonlinear waves and material interface will be investigated based on the studies of genuine multidimensional Riemann solver and large deformation interface modeling, and Genuine multidimensional oscillation-free methods with high fidelity will be constructed to o

英文关键词: compressible multi-fluid flows;high resolution;multi-dimensional;Riemann solver;

成为VIP会员查看完整内容
0

相关内容

算法分析导论, 593页pdf
专知会员服务
148+阅读 · 2021年8月30日
专知会员服务
38+阅读 · 2021年5月30日
专知会员服务
35+阅读 · 2021年2月20日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
77+阅读 · 2020年12月6日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
流计算引擎数据一致性的本质
阿里技术
0+阅读 · 2021年10月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
算法分析导论, 593页pdf
专知会员服务
148+阅读 · 2021年8月30日
专知会员服务
38+阅读 · 2021年5月30日
专知会员服务
35+阅读 · 2021年2月20日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
77+阅读 · 2020年12月6日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员