项目名称: 外加电场对拓扑绝缘体薄膜中拓扑表面态和自旋劈裂的调控

项目编号: No.11464013

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 杨红

作者单位: 吉首大学

项目金额: 50万元

中文摘要: 最近,实验上发现了在Bi2Se3类拓扑绝缘体中存在二维电子气;在其表面吸附气体分子,碱金属原子,重金属原子,磁性原子等会产生显著的Rashba自旋劈裂。吸附原子,分子所起的作用类似于在拓扑绝缘体表面施加了外加电场。而外加电场是调控半导体异质结中二维电子气的自旋轨道耦合强度的一个最有希望和广泛采取的方式,在实验上也易于实现。本项目将基于第一性原理计算,研究在外加电场下,Bi2Se3类拓扑绝缘体薄膜的表面态,量子阱态的变化,自旋劈裂强度与电场大小之间的定量关系;研究在外加电场下,拓扑绝缘体与不同基底(石墨烯,Si,GaAs),Bi,或Pb膜构成的系统中界面态,量子阱态的变化,自旋劈裂的变化;研究在Bi2Se3类拓扑绝缘体中的自旋劈裂中高阶Rashba项的贡献与外加电场之间的关系。相关研究可能会发现一些新量子现象和概念,并希望为从原理上设计一些功能易为调控的新型自旋电子器件提供物理基础。

中文关键词: 拓扑绝缘体;第一性原理计算;自旋电子学

英文摘要: Recently, it was found experimentally that there exists 2D electron gas in Bi2Se3-type TI and that the adsorption of alkali, heavy metal and magnetic atoms can lead to very large Rashba spin splitting. The adsorption of atoms and molecules is equivalent to application of an effective electric field to the TI surface. The external electric field is the most promising and popular approach to tune the Rashba spin orbit coupling strength in semiconductor heterostructures, which can be easily implemented in experiments. In this project, the variation of the surface states and the quantum well states of the Bi2Se3-type TI films with respect to the external electric field will be studied based on first-principles calculations. The TIs interfaced with different substrates(C, Si, GaAs), Bi and Pb films will be investigated, aiming to reveal the change of the interface states, quantum well states and the spin splitting under external electric field. We will also explore the relation between the contribution of the high order Rashba terms to the spin splitting and the applied electric field in Bi2Se3 type TIs. It is expected that new quantum phenomena and concepts will be discovered in our research, which will help to the design of new spintronic devices that can be effectively tuned.

英文关键词: topological insulators;first-principles calculations;spintronics

成为VIP会员查看完整内容
0

相关内容

【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员