项目名称: 新型磁调谐光子晶体光纤光栅功能器件及传感技术研究

项目编号: No.61273059

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 赵勇

作者单位: 东北大学

项目金额: 82万元

中文摘要: 光子晶体光纤由于结构及参数设计的灵活性,而具有一系列"奇异"的光学特性,因此可用来制作各种前所未有的、功能新奇的光子器件。光子晶体光纤光栅可弥补传统光纤光栅的不足,通过灵活的结构设计而使传输特性可控及反射谐振波长个数可调,进而实现高精度、大的波长调谐范围以及多参数、分布式传感。本项目提出一种新型的磁控可调谐光子晶体光纤光栅功能器件,将纳米功能材料磁流体填充入光子晶体光纤的空气孔中,通过外加磁场的改变来调节磁流体的折射率,从而改变光子晶体光纤光栅的传输特性和光谱反射特性。利用这种新型的功能器件,提出一种磁场检测的新原理和新方法,并对其准分布网络化传感的关键技术问题进行研究;提出一种新型的可调谐光纤Sagnac滤波器的理论,并对其用于FBG传感网络的波长信号解调方法进行研究。项目的研究内容属于信息检测与传感技术领域的前沿性研究内容,具有明显的创新性、多学科交叉性和实际应用前景。

中文关键词: 光子晶体光纤;磁流体;磁场测量;光纤传感器;

英文摘要: Due to the flexibility for design, photonic crystal fiber(PCF) has a series of fantastic optical characteristics, resulting in some novel photonic devices which are based on those PCFs. Photonic crystal fiber Bragg grating(PCFBG) is one of the novel optical devices which can make up for the shortage of normal FBGs. By the flexible structure design, the transmission characteristic and the resonant wavelength of the PCFBG could be controled and tuned, which make it possible for the high accuracy, large tunable range, multi-parameter and distributed sensing. A novel functional optical tunable device based on the magnetic controlling was proposed in this project. The nano-composite material of magnetic fluid is filled in the air hole of the PCF cladding. The refractive index of the magnetic fluid is tuned by changing the intensity of the applied magnetic field, resulting in the change in the transmission characteristic and reflected spectrum of the PCFBG. Based on the proposed device, a novel principle and measurement method for magnetic field are presented. Researches will also be carried on the key problems about the sensor networks technology. A novel kind of tunable fiber Sagnac filter was proposed, and based on it, wavelength demodulation method for the FBG sensor networks is developed. The contents proposed i

英文关键词: Photonic crystal fiber;magnetic fluid;magnetic field measurement;optical fiber sensors;

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
专知会员服务
39+阅读 · 2021年7月4日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
137+阅读 · 2020年5月19日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
开启 120Hz,你的 4K 电视还是 4K 吗?
ZEALER订阅号
0+阅读 · 2022年4月6日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
SAR成像原理及图像鉴赏
无人机
20+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
专知会员服务
39+阅读 · 2021年7月4日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
137+阅读 · 2020年5月19日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员