项目名称: 应变自组织InGaAs量子点光电材料的辐射损伤机理研究

项目编号: No.11275262

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 郭旗

作者单位: 中国科学院新疆理化技术研究所

项目金额: 90万元

中文摘要: InGaAs量子点光电材料具有对垂直入射光敏感、暗电流小、载流子寿命长等独特优势,在空间红外光电领域具有良好的应用前景。然而空间辐射环境易于诱发光电器件的性能退化甚至失效,而量子点材料的量子限制效应等特性也必然带来新的辐射效应。本项目将InGaAs量子点材料的制备与测试技术和半导体辐射物理理论相结合,研究材料的辐射损伤效应与机理。 针对应变自组织InGaAs/GaAs量子点材料,首先通过不同射线辐照试验,获得材料的光学、电学特性的辐射效应规律,确定材料对不同射线辐照的敏感性,分析辐射对材料的载流子动态特性和诱发缺陷的影响。然后制备不同InGaAs量子点微结构,并进行辐照试验,分析微结构的生长参数、结构和表面钝化与其辐射损伤的相关性,揭示辐射损伤机理。 此项研究具有一定的前瞻性,对于发展InGaAs量子点红外器件的抗辐射加固工艺、结构选择优化,以及推动其空间应用具有重要的研究意义与应用价值。

中文关键词: InAs自组装量子点;InGaAs量子阱;辐射效应;位移损伤;光致发光谱

英文摘要: InCaAs quantum dots has very useful application prospect in spatial infrared photoelectric devices due to its advantage of sensitivity to normal incidence, low dark current and long carrier lifetime. However, photoelectric devices is prone to degrade or even fail when positioned in spatial radiation environment. The three-dimensional carrier confinement and other features of quantum dots will doom to cause some new radiation effects. In this project, we will research the radiation effect and mechanism of InCaAs quantum dots by combining its process and test technology with the radiation mechanism of semiconductor devices. For strained self-assemble InGaAs/GaAs quantum dots materials, we will carry out different rays irradiation experiment to obtain how the optical and electrical characters of the devices change with different rays. And we can find out the sensitivity of devices to different rays. We will also analysis the radiation influence on carrier dynamic characters and radiation-induced defects of devices. We can get the correlation between the growth parameters, microstructure and surface passivation of the devices and radiation effects through radiation experiments on quantum dots with different process, and discover its radiaton damage mechanism. As a prospective fundamental research, this project is be

英文关键词: InAs self-assembled quantum dot;InGaAs quantum well;radiation effects;displacement damage;photolumincesence

成为VIP会员查看完整内容
0

相关内容

6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
【ICIG2021】早鸟票倒计时3天丨不能错过ICIG2021的4大理由
中国图象图形学学会CSIG
0+阅读 · 2021年10月28日
【ICIG2021】官宣!ICIG2021,如约重启!11月26-28日海口见!
中国图象图形学学会CSIG
0+阅读 · 2021年9月26日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
46+阅读 · 2021年10月4日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关主题
相关VIP内容
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
相关资讯
【ICIG2021】早鸟票倒计时3天丨不能错过ICIG2021的4大理由
中国图象图形学学会CSIG
0+阅读 · 2021年10月28日
【ICIG2021】官宣!ICIG2021,如约重启!11月26-28日海口见!
中国图象图形学学会CSIG
0+阅读 · 2021年9月26日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员