项目名称: 基于介孔硅的核磁荧光双模态靶向纳米探针制备及机理研究

项目编号: No.11274394

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 邵元智

作者单位: 中山大学

项目金额: 90万元

中文摘要: 磁共振荧光双模态成像可同时准确提供肿瘤的空间定位和高灵敏度揭示肿瘤细胞分子内部的活动细节。以介孔硅为载体,借助纳米组装技术合成一种核磁-荧光双模态纳米复合材料,经表面修饰在其表面挂接鼻咽癌靶标分子,形成靶向核磁-荧光双模态分子影像探针。通过超快荧光寿命谱分析、基于密度泛函理论的能量-构型计算及大分子团簇动力学模拟,本项目拟:1.探讨核磁模态的Gd2O3磁性团簇、纳米Au团簇及荧光模态DiR基团三组元间模态耦合的增强-淬灭机理;2.考察荧光基团、靶标分子与载体的耦合位点、方式及其相应的能量构型差异,获得灵敏稳定的靶向组合,减小靶向组合在体内发生断裂降解的可能性。对制备的双模态纳米探针进行动物模型的短期毒性测试及双模态成像评价,并实施双模态的影像融合。本项目不仅研发一种具有实用价值的靶向核磁-荧光双模态分子影像探针,也从学科交叉层面来探讨上述介观系统的光磁耦合作用新特征及其机制的物理基础。

中文关键词: 介观系统;纳米复合材料设计与制备;纳米毒性;多模态纳米探针;核磁-荧光耦合

英文摘要: Dual-modal imaging simultaneously by MRI and fluorence can offer a precise spatial tomograph of a tumor as well as reveal the details of biological activity inside tumor cells. In this project, we intend to prepare a specific targeted nanoproble with MRI-fluorescence dual modality for molecular imaging of cancer. The nanoprobe, a new nanocompoiste, is developed with mesoporous silica as the framework and assembled with nanoscale gold rod, Gd2O3 clusters and fluorescent molecules DiR through synthesis. Theoretical apporaches to the structure versus property of the nanocomposite, based on the density functional theory and molecular dynamics, provide in silico performance of the nanocomposite and serve as a primary guide for the design of the nanoprobe. Systematical characterizations of the nanocomposite are carried out,including its capabilty for both in vitro and in vivo MR and fluorescent imaging,its acute nanotoxicity and biocompatibility etc. Image-fusion technique is employed to fuse the independent imagings by MRI and fluorescence, respectively, into a dual-modal image. The key points of the study include below: 1. The interactions among the magnetic Gd2O3 cluster, nanosized gold rod and fluorescent molecules DiR; the mechanism underlying either the enhancement or quenching of fluorence luminescence and MR

英文关键词: mesoscopic system;nanocomposite design and synthesis;nanotoxicity;multimodal nanoprobe;MRI-fluorescence coupling

成为VIP会员查看完整内容
0

相关内容

【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
19+阅读 · 2021年11月16日
专知会员服务
30+阅读 · 2021年8月16日
专知会员服务
15+阅读 · 2021年8月2日
专知会员服务
33+阅读 · 2021年7月26日
专知会员服务
21+阅读 · 2021年5月1日
专知会员服务
31+阅读 · 2021年1月9日
专知会员服务
20+阅读 · 2020年3月29日
【NeurIPS2021】多模态虚拟点三维检测
专知
0+阅读 · 2021年11月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
19+阅读 · 2021年11月16日
专知会员服务
30+阅读 · 2021年8月16日
专知会员服务
15+阅读 · 2021年8月2日
专知会员服务
33+阅读 · 2021年7月26日
专知会员服务
21+阅读 · 2021年5月1日
专知会员服务
31+阅读 · 2021年1月9日
专知会员服务
20+阅读 · 2020年3月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员