项目名称: 红外探测中应用的新型电致变色共轭聚合物研究

项目编号: No.51303212

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 李忠涛

作者单位: 中国石油大学(华东)

项目金额: 25万元

中文摘要: 无论在军事上还是民用领域,红外探测都扮演着不可或缺的角色。目前的红外探测仪器,存在体积大、生产成本高等问题,影响其广泛应用。一个重要原因是,探测仪中的遮光板目前都是通过机械方式控制的,结构复杂而且价格昂贵。共轭高分子电致变色材料可以通过外在电讯号的改变其特征吸收,特别是在红外波段的光吸收率变化幅度很大。而且,它具有机械电子部件无法比拟的体积小,加工方便和成本低等优点。但是,目前聚合物材料在对比度,响应时间和稳定性方面还需提高。本项目拟开发新型共轭聚合物,通过结构的优化,提升材料的上述性能,满足实际应用中对材料的要求。不仅可以降低红外仪的体积和成本,而且更加容易加工成不同的形状用于孔径成像。对这类电致变色材料和器件加工研究,可以为解决下一代红外探测中的核心问题提供新思路和新方法。

中文关键词: 共轭聚合物;纳米材料;电化学;复合材料;

英文摘要: Present optics in IR imaging devices are hindered by costly, slow, bulky, mechanical components centered around cooling the entire system. Examples of current systems include: relatively bulky high magnification, helmet-mounted sensors that require large lens and telescope configurations, noisy mechanical shutters which limit the usefulness of many imaging systems in covert applications, expensive and bulky electronics required to mitigate focal-plane array (FPA) saturation effects (i.e., blooming) in all-weather applications, and bulky filters that are necessary to improve imaging contrast through haze and at dusk. The drive to reduce system size, weight and power consumption, while increasing the resolution and format of infrared imaging systems poses new and challenging performance requirements. Current efforts to address many of these challenges including development of light weight, fast, non-moving components have been focused on leveraging established micro-electro-mechanical systems (MEMS) approaches. However, development of reliable MEMS-based technologies has proven to be expensive, time-consuming and processing intensive. Herein, we propose to build and characterize conformal, polymer-based devices that can be fabricated directly onto pre-existing optical elements and dynamically alter the flux of i

英文关键词: conjugated polymer;nanomaterials;electrochemistry;composite;

成为VIP会员查看完整内容
0

相关内容

人工智能在司法领域的应用
专知会员服务
43+阅读 · 2022年4月1日
专知会员服务
38+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
DARPA可解释人工智能
专知会员服务
122+阅读 · 2020年12月22日
【NeurIPS 2020 】神经网络结构生成优化
专知会员服务
19+阅读 · 2020年10月24日
为任意屏幕尺寸构建 Android 界面
谷歌开发者
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月20日
Arxiv
0+阅读 · 2022年5月20日
Automated Crossword Solving
Arxiv
0+阅读 · 2022年5月19日
Continuously-Tempered PDMP Samplers
Arxiv
0+阅读 · 2022年5月19日
Arxiv
33+阅读 · 2021年12月31日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员