项目名称: 基于微流体制造的神经鞘模拟构建
项目编号: No.51473098
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 范红松
作者单位: 四川大学
项目金额: 85万元
中文摘要: 在神经再生过程中,神经轴突重新建立与远端靶器官的连接是实现神经功能恢复的途径,而在此过程中轴突沿雪旺细胞形成的神经鞘(髓鞘)生长是形成神经元与靶器官连接的关键。本研究拟基于微流体技术模拟构建类神经鞘结构实现神经再生。设计可自组装双亲性多肽,利用微流体通道的层流效应,获得具有神经纤维微结构特征的凝胶微管模拟神经鞘结构,并定向组装形成类神经纤维束。在这个模拟神经鞘的纤维微管结构中,凝胶微管壁包裹了神经鞘的功能细胞--雪旺细胞,自组装多肽在流体剪切应力作用下形成纳米尺度范围的纤维定向排列,可诱导雪旺细胞定向排列生长,定向排列的雪旺细胞构成的空心微管具有神经鞘的结构特征,进而可望实现其对神经轴突生长的诱导作用。多肽设计既赋予其自组装及微流体成型功能,并通过功能肽片段的插入获得促进细胞粘附和诱导神经细胞分化的功能,从而建立神经再生的基质功能与神经鞘结构模拟,诱导神经轴突定向生长,为神经再生奠定基础。
中文关键词: 微流体;水凝胶;多肽;生物制造;神经再生
英文摘要: In the process of nerve regeneration, the re-establishment of a connection between neurite and remote target organ is the way to achieve the recovery of neurological function, in which, the directed growth of neurite along the Schwann cell constituted myelin is the key to the connection formation. Our study attempts to biofabricate myelin-like structure to realize nerve regeneration on the basis of microfluidic technology. Using the laminar flow effect of microfluidic channels and self-assembled amphiphilic peptides, the micro-sclaled fiberous tube with a similar structure of the natural nerve can be synthesized and further assembled into directed nerve bundle. Myelin cell-schwann cells were encapsulated in this myelin-like microtube to develop an oriented growth through contact guidance with the aligned peptide amphiphile nanofibers, organized spatially by the applied fluid ?ow prior to gelation. This microtube containing aligned schwann cells simulates the specific structure of myelin, and thus holds great potential to induce outgrowth of neurite. The diversity of peptide designing endows the material not only the ability of self-assembly and microfluidic molding, but also an amenable modification by inserting functional peptide fragment to promote cell adhesion and differentiation. This accordingly establishes a matrix with structural and founctional biomimetic myelin, inducing directional growth of neurite and laying the foundation for nerve regeneration.
英文关键词: microfludic;hydrogel;peptide;biofabrication;never regeneration