项目名称: 基于模块结合面微观接触机理的模块化机器人动态特性分析与研究

项目编号: No.51505092

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 机械、仪表工业

项目作者: 吴文强

作者单位: 广州大学

项目金额: 20万元

中文摘要: 与传统机器人相比,模块化机器人具有多功能、可重构、成本低、装拆方便和便于维护等优点,已成为机器人发展的重要趋势之一。然而由于众多模块结合面的存在,造成模块化机器人精度、刚度等指标均低于传统机器人。本项目从模块结合面工作机理出发,深入研究模块结合面对模块化机器人静动态性能的影响,建立一套完整的模块化机器人动态特性分析方法。首先,从微观角度提出一种将模块结合面等效为一种虚拟柔性介质的机器人模块结合面动力学模型;然后结合传统运动弹性动力学和柔性多体系统动力学等方法的缺点与不足,重点考虑模块结合面的影响,提出适合于模块化机器人刚柔耦合机构非线性分析的动力学建模新方法;最后,通过引入非线性动力学理论,分析模块结合面对模块化机器人刚柔耦合机构的非线性动态特性的影响。本项目的研究成果可为模块化机器人系统的综合性能提升、高精度控制和工程应用的推广等奠定坚实的理论基础。

中文关键词: 模块化机器人;结合面;分形理论;静动态特性

英文摘要: Compared with traditional robots, modular robot system is with many advantages and benefits, such as versatility, reconfigurability, low-cost, fault-tolerance and self-repair,modularity has become one of the important trend of the development of robots. However, the modular robot has also exposed some inherent defects in the process of application, which cause the precision and stiffness performance of the modular robot are lower than the traditional robots. From the working mechanism study of the module joint surface, the project employs further study of the impact of module joint surface on static and dynamic performances of modular robot. Thereby a complete analysis of the dynamic characteristics of modular robots is established. Firstly, form the microcosmic perspective, a module joint surface dynamic model, in which the module joint surface is equivalent to a kind of virtual flexible medium, is proposed. Then, combining the shortcoming and the insufficiency of traditional kineto-elastodynamic analysis method and flexible multibody dynamics, focusing on the influence by module joint surfaces, a new dynamic modeling method is proposed, which is suitable for the nonlinear analysis of modular robot rigid flexible coupling systems. Finally, by introducing the theory of nonlinear dynamics, the influence of module joint surface on modular robot rigid flexible coupling systems is analyzed. Research results of this project can lay a solid theoretical foundation for enhancing the comprehensive performance, high-precision control and engineering applications of modular robot.

英文关键词: modular robot;joint surface;fractal theory;static and dynamic performance

成为VIP会员查看完整内容
1

相关内容

数字孪生模型构建理论及应用
专知会员服务
211+阅读 · 2022年4月19日
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
82+阅读 · 2022年4月17日
超级自动化技术与应用研究报告(2022年)
专知会员服务
77+阅读 · 2022年2月3日
专知会员服务
93+阅读 · 2021年6月23日
专知会员服务
11+阅读 · 2021年5月25日
专知会员服务
31+阅读 · 2021年2月17日
基于深度学习的数据融合方法研究综述
专知会员服务
130+阅读 · 2020年12月10日
专知会员服务
102+阅读 · 2020年11月27日
专知会员服务
33+阅读 · 2020年11月26日
深度学习目标检测方法综述
专知会员服务
259+阅读 · 2020年8月1日
从0到1,搭建经营分析体系
人人都是产品经理
0+阅读 · 2022年3月6日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
多因素问题分析时,如何确立各因素权重?
人人都是产品经理
74+阅读 · 2020年3月4日
【数字孪生】数字孪生标准体系探究
产业智能官
47+阅读 · 2019年11月27日
【仿真】基于大数据的机器学习与数值仿真技术
产业智能官
49+阅读 · 2019年9月3日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
工业大数据分析之道:机理与数据分析的知识融合
遇见数学
12+阅读 · 2017年11月25日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Accurate ADMET Prediction with XGBoost
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
211+阅读 · 2022年4月19日
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
82+阅读 · 2022年4月17日
超级自动化技术与应用研究报告(2022年)
专知会员服务
77+阅读 · 2022年2月3日
专知会员服务
93+阅读 · 2021年6月23日
专知会员服务
11+阅读 · 2021年5月25日
专知会员服务
31+阅读 · 2021年2月17日
基于深度学习的数据融合方法研究综述
专知会员服务
130+阅读 · 2020年12月10日
专知会员服务
102+阅读 · 2020年11月27日
专知会员服务
33+阅读 · 2020年11月26日
深度学习目标检测方法综述
专知会员服务
259+阅读 · 2020年8月1日
相关资讯
从0到1,搭建经营分析体系
人人都是产品经理
0+阅读 · 2022年3月6日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
多因素问题分析时,如何确立各因素权重?
人人都是产品经理
74+阅读 · 2020年3月4日
【数字孪生】数字孪生标准体系探究
产业智能官
47+阅读 · 2019年11月27日
【仿真】基于大数据的机器学习与数值仿真技术
产业智能官
49+阅读 · 2019年9月3日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
工业大数据分析之道:机理与数据分析的知识融合
遇见数学
12+阅读 · 2017年11月25日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员