项目名称: 无铅掺杂银浆的激光烧结机理研究

项目编号: No.61306076

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 李涛

作者单位: 中国科学院电工研究所

项目金额: 25万元

中文摘要: 本项目提出了新型的激光烧结技术,能够一步完成掺杂和烧结两个技术环节,同时获得重掺杂发射区和栅线电极种子层,并采用环保型的无铅掺杂银浆。拟采用拓扑分析方法研究重结晶的银晶粒分布,通过微观形貌与激光参数、热退火等因素的关系,采用形貌优化降低接触电阻;通过掺杂浓度分布、物相分析、电性能等方面的深入分析,确立界面载流子输运机制,研究探索导电机理;通过晶体缺陷的信息分析,在微观尺度探讨研究激光诱导损伤机理,并研究热退火降低激光诱导损伤程度的微观机理,同时降低损伤程度;采用有限差分方法描述包括熔化、掺杂、重结晶、烧结等多环节的激光烧结过程,考虑晶型转变、对流过程、非稳态温度场分布、晶体缺陷、固相-液相交界区域的相态等多方面实际情况,研究磷原子和银原子在液体硅中的扩散行为,建立新型的双原子液相扩散数值模型。通过本项目的研究,能够探明新型激光烧结技术机理,从而为该技术的具体实施提供科学指导。

中文关键词: 激光烧结;激光诱导损伤;双原子液相扩散;The project proposes novel las;

英文摘要: The project proposes novel laser sintering technology, which achieves doping and sintering simultaneously to obtain heavy doped area and seed layer of gridlines. In addition, the environment-friendly lead-free doped silver paste is applied. The proposed project will study the distribution of recrystallized silver crystal grain by topological analysis method. By the adoption of topography optimization, the contact resistance can be reduced, through the relationship between microscopic topography and some factors, such as laser parameter, annealing and so on. The interface carrier transport mechanism will be confirmed and conductive mechanism will be explored by detailed analysis on several aspects, such as doping concentration distribution, phase analysis, electrical property and so on. The mechanism of laser-induced damage can be detailed analyzed at the micro-scale by information analysis of crystal imperfection. The microscopic mechanism of degree reduction of laser-induced damage by annealing technology will be investigated to reduce the damage degree. The finite difference methods is applied to describe the laser sintering process consisted of multiple steps, such as melting, doping, recrystallizing, sintering and so on. The diffusion behaviors of phosphorus atoms and silver atoms in liquid-phase silicon are

英文关键词: laser sintering;laser-induced damage;diatomic liquid-phase;lead-free doped silver paste;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
23+阅读 · 2021年8月1日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
105+阅读 · 2021年4月7日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
102+阅读 · 2021年6月8日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
16+阅读 · 2021年1月27日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
102+阅读 · 2021年6月8日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
16+阅读 · 2021年1月27日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员