项目名称: 燃爆环境下超声测距换能系统本安驱动机理及其电声阻抗匹配优化
项目编号: No.51504161
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 矿业工程
项目作者: 王宇
作者单位: 太原理工大学
项目金额: 22万元
中文摘要: 超声测距系统通过高压脉冲驱动换能器完成电能向机械能的转换,并通过机电谐振实现机械能向电能的转换,但在短路、过载、换路等状态下,固有的非线性储能放能会导致系统产生非安全火花及能量,制约了其在燃爆环境中的应用。探索超声换能系统的本安驱动机理和换能效率提升方法会有助于系统在燃爆环境中的安全使用。首先,根据最小点燃能量理论对驱动方法进行非爆炸性本安特性分析,建立回路电气参数模型实现驱动能力的数值模拟和衰减分析,阐明换能系统本安驱动机理。其次,确定本安驱动下换能系统电声阻抗匹配优化提升能量转换效率的理论方法,设计基于多指标决策模型的匹配优化机制,构建决策属性矩阵实现指标优化,并通过阻抗匹配分析与换能元件制备,从电信号和机械波传输匹配方面实现能量转换效率的提升。本项目的实施将提供一种超声换能系统的本安驱动及其电声阻抗匹配优化的换能方法,也为其它超声系统在燃爆环境下的安全设计与应用提供借鉴。
中文关键词: 本质安全;最小点燃能量;阻抗匹配;驱动机理;超声波测距
英文摘要: The ultrasonic ranging system drives the transducer to complete the conversion of electrical energy to mechanical energy by the high-voltage pulse, and the conversion of mechanical energy to electrical energy is achieved by the electromechanical resonance. But in the state of short circuit, overload and switching, the inherent nonlinear storage of energy and release of energy can cause system to generate non-safe spark and energy, restrict its application in flammable and explosive environment. The exploration of the mechanism of intrinsically safe driving and the method of improvement of energy conversion efficiency for the ultrasonic energy conversion system is an important scientific problem which has to be solved for the application of the ultrasonic systems in flammable and explosive environment. Firstly, according the minimum ignition energy theory, the analysis on the non explosive intrinsically safe characteristics of the driving method is made. An electric circuit model for the numerical simulation and the analysis of attenuation of the driving ability is established, and the intrinsically safe driving mechanism of the energy conversion system is clarified. Secondly, the theoretical methods of the optimization of electrical and acoustic impedance matching to improve the energy conversion efficiency are determined. The mechanism of matching optimization based on the model of Multiple Criterion Decision Making (MCDM) is designed. The index optimization is carried out by the construction of a decision-making matrix. The improvement of the energy conversion efficiency is achieved from the aspect of the matching of transmissions of electric signal and mechanical wave, by the analysis of impedance matching and the fabrication of energy conversion element. The implementation of the project will provide a new energy conversion method for the intrinsically safe driving and its optimization of electrical acoustic impedance matching of the ultrasonic energy conversion system, as well as provide the reference for the safety design and application of other ultrasonic system in flammable and explosive environment.
英文关键词: Intrinsic safety;Minimum ignition energy;Impedance matching;Driving mechanism;Ultrasonic ranging