项目名称: 充液挠性航天器姿态快速机动控制与多目标协同优化研究
项目编号: No.61773211
项目类型: 面上项目
立项/批准年度: 2018
项目学科: 自动化技术、计算机技术
项目作者: 郭毓
作者单位: 南京理工大学
项目金额: 16万元
中文摘要: 充液挠性航天器因携带大量液体燃料和大型轻质挠性附件,其姿控系统具有刚柔液耦合的复杂非线性动力学特性,姿态机动极易诱发液体晃动和附件振动,这对实现航天器姿态大角度快速机动快速稳定提出了巨大挑战。本项目面向国家重大战略需求,针对充液挠性航天器姿态机动过程中抑振抑晃这一关键问题,提出协同设计机动路径和姿态控制器的新思路。通过剖析刚体运动、挠性附件振动和液体燃料晃动三者之间的内在联系,研究充液挠性航天器姿态大角度快速平稳机动路径规划的方法。针对在轨航天器参数时变和受到持续干扰等不确定问题,构建挠性模态振动与液体晃动观测器,研究适于充液挠性航天器的鲁棒自适应有限时间姿态机动控制方法;探索机动路径与姿态控制器协同设计的方案,通过数字仿真验证所提方法的有效性,为充液挠性航天器高性能姿态控制提供理论与技术支撑。
中文关键词: 充液挠性航天器;姿态机动;有限时间控制;多目标优化;路径规划
英文摘要: The attitude control system of liquid-filled flexible spacecraft has complex nonlinear dynamics of rigid-flex-liquid coupling because of large quantity of liquid fuel and light flexible appendages carried. Attitude-maneuver-induced liquid sloshing and appendage vibration raises great challenge to achieving rapid large-angle maneuver and fast subsequent stabilization for the spacecraft. Aiming at the key issue of restraining vibration and slosh during the attitude maneuver, a new strategy to design the maneuver profile and the attitude controller cooperatively will be investigated. Through the analysis of the relationship between attitude movement of the hub, liquid sloshing and appendage vibration, novel approach to plan rapid maneuver profile in large-angle mobility mode for the three-axis attitude of flexible spacecraft will be explored. Meanwhile, to cope with the uncertainties such as time-varying parameters in the system and persistent disturbances which orbiting spacecraft is subjected to, a robust adaptive finite-time controller for the attitude maneuver will be studied by constructing a flexible modal vibration and a liquid-slosh observer. A feasible scheme for a cooperative design of the maneuver path and controller will be investigated. The proposed scheme will be verified by corresponding simulations. The project will provide theoretical and technical support for the implementation of high-performance attitude control for the liquid-filled flexible spacecraft.
英文关键词: Liquid-filled Flexible Spacecraft;Attitude Maneuver;Finite-time Control;Multi-objective Optimization;Path Planning