项目名称: 生物支架材料的仿生性硫酸化对人骨髓间充质干细胞软骨分化及肥大的影响

项目编号: No.31300796

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 边黎明

作者单位: 香港中文大学深圳研究院

项目金额: 23万元

中文摘要: 近年来,我国骨关节炎发病人数急剧攀升。人骨髓间充质干细胞(hMSCs)由于其各项优点,已成为广泛关注的修复关节软骨的细胞源。然而在初始软骨分化后,hMSCs继续朝向肥大软骨细胞显型分化,导致新生软骨广泛矿化。此问题已成为hMSCs应用于临床软骨修复的主要障碍。糖胺聚糖(GAG)是软骨细胞外基质(ECM)的关键组成部分。硫酸化糖胺多糖已被证明能够吸附并保持各类生长因子的活性。前期实验证明这其中包括多种有利于干细胞软骨分化并能抑制其软骨肥大分化的生长因子。同时硫酸糖胺聚糖所带负电荷能够吸附包括钙离子等正电荷离子,从而改变组织环境中钙离子浓度并影响软骨矿化的过程。本项目提议通过在仿生水凝胶支架材料中加入硫酸根基团以模拟软骨细胞微环境的生物化学特性,并探究其对所封装hMSCs软骨分化及其随后的肥大性软骨组织矿化的调节作用。项目成果不仅有助于开发干细胞软骨修复新疗法,并且也将有助于研发新型支架材料。

中文关键词: 水凝胶;关节软骨;透明质酸;;

英文摘要: The World Health Organization predicts that the number osteoarthritis patients in China will reach 150 million in 2015. Human mesenchymal stem cells (hMSCs) have emerged as a clinically relevant cell source for cartilage repair, due to their multipotency and easy availability. However, after firstly differentiating (chondrogenesis) into chondrocytes (cartilage cells) like cells, hMSCs continue to differentiate toward a hypertrophic phenotype, resulting in extensive mineralization of the neocartilage formed, which should be free of mineralization. This problem, which motivates this proposed work, is now being recognized as a major obstacle to the widespread adoption of hMSCs as a clinically viable cell source for cartilage repair. Glycosaminoglycan (GAG) is a key component of the cartilage extracellular matrix (ECM). Sulfated glycosaminoglycans have been shown to maintain the activity of growth factors,many of which have been shown to promote chondrogenesis and inhibit hypertrophy of hMSCs. Sulfated glycosaminoglycans also attract cations including calcium ions with their negative charges, thereby changing the calcium concentration in the intercellular tissue environment and influencing tissue mineralization. The project proposed to chemically incorporate the sulfate groups in biomaterial hydrogel scaffold to emu

英文关键词: hydrogel;articular cartilage;hyaluronic acid;;

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
专知会员服务
31+阅读 · 2021年5月7日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
28+阅读 · 2020年4月6日
专知会员服务
27+阅读 · 2020年3月6日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
专知会员服务
31+阅读 · 2021年5月7日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
28+阅读 · 2020年4月6日
专知会员服务
27+阅读 · 2020年3月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员