项目名称: 金属微纳结构α-Si:H/μc-Si:H双结薄膜太阳能电池研究

项目编号: No.91233119

项目类型: 重大研究计划

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 李孝峰

作者单位: 苏州大学

项目金额: 80万元

中文摘要: 表面等离子太阳能应用是微纳光学和光伏领域的最新热点。研究表明,借助表面等离子技术有望实现太阳能的高效低成本利用。现有研究主要针对单结太阳能电池展开,对于新型多结系统还鲜有报道。本项目选取具备重要应用前景的非晶硅/微晶硅(α-Si:H/μc-Si:H)双结薄膜光伏系统作为研究对象,详细探讨如何设计金属微纳结构来提高此类器件光电转换效率。我们将广泛采用Mie理论、严格耦合波、时域有限差分和有限元等光学方法详细研究多种金属微纳结构下α-Si:H/μc-Si:H双结系统的散射、近场限制、导波、光学捕获与吸收等光学现象,并严格模拟三维空间下载流子(电子、空穴)的生成、输运、复合和收集等电学过程,得到器件完整的光学/电学性能指标,准确预测器件性能。实验上,将利用多种微纳工艺进行金属微纳系统和太阳能电池的制作以及相关结构/器件的光学电学表征。本课题的成功实施将为光伏领域提供新颖的器件设计方案。

中文关键词: 金属微纳结构;薄膜太阳能电池;光电子器件;表面等离子体;

英文摘要: The application of surface plasmons in solar energy is the most popular topic in the fields of micro-nano optics and photovoltaics. Research results show that it is expected to realize the highly-efficient and low-cost utilization of solar energy in terms of the surface plasmon technology. However, most of current researches focus solely on the single-junction solar cells, with very rare reports on the novel multi-junction systems. Based on the above observation, the attractive α-Si:H/μc-Si:H double-junction thin-film photovoltaic systems will be studied with a detailed investigation on how to design metallic micro-nano structures to improve the light-conversion efficiency of this sort of device. Some optical simulation methods, such as Mie theory, rigorous coupled-mode approach, finite-difference time-domain method, and finite-element method, will be extensively used in this project to analyze the light scattering, localized optical confinement, waveguiding, light trapping and optical absorption of α-Si:H/μc-Si:H double-junction systems with various metallic micro-nano configurations. Moreover, the generation, transportation, recombination and collection processes of carriers (electrons and holes) will be modeled in a rigorous way in three spatial domains. In this way, the complete optical and electronic perfor

英文关键词: Metal micro-nano structures;thin-film solar cells;optoelectronic devices;surface plasmons;

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
70+阅读 · 2021年3月27日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
70+阅读 · 2021年3月27日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员