项目名称: 基于界面反应为导向的光催化剂设计和构建:以降解气相苯为例
项目编号: No.21473066
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 有机化学
项目作者: 付先亮
作者单位: 淮北师范大学
项目金额: 86万元
中文摘要: 高效光催化剂研制是光催化技术规模化应用所面临的核心问题。目前其研发工作主要是围绕材料光吸收和载流子迁移展开,界面反应在研发中的潜在导向作用尚未引起足够关注。本项目提出以界面反应中的关键活性物种和制约步骤为导向,结合已有光/热催化构效经验规律,从光活性和反应活性中心角度来针对性地设计和构建光催化剂的新研究思路。基于前期探索,选择降解气相苯为模拟反应,针对空穴直接氧化苯环导致的积炭失活和反应关键活性物种O2-?,构想以能强化HO?形成的氢氧化物为催化剂基底,能匹配自由基物种形成的半导体组分和能吸附活化O2的热催化组分为光活性和表面反应活性组分。通过系统制备、表征、活性评测和机制分析研究,揭示目标催化剂的关键组分和结构,阐明样品的构效关系和各组分在光激发和表面反应上的协同机制,探索建立起从界面反应的角度来设计和构筑光催化剂的新研究模式,为适用于特定类型反应的光催化剂研发提供理论依据和实践借鉴。
中文关键词: 光催化剂;界面反应为导向;构建;设计;苯降解
英文摘要: Developing high performance photocatalyst is the core issue in the large-scale application of photocatalytic technology. At present, most of the research efforts have been concentrated on the light absorption and the migration of charge carriers in the material. However, little attention has been devoted to the potential guiding role of the interfacial reaction in developing of a photocatalyst. A new research strategy is proposed in this proposal to design and construct a photocatalyst from the aspects of photo-active sites and reaction active sites which are oriented by the key active species and the restriction step of the target reaction, and supported by the empirical rules concerning the relationships between structure and the photocatalytic or thermocatalytic activity. Motivated by our recent explorations, the photocatalytic degradation of gaseous benzene is selected in the project as a model reaction. Due to the reaction is plagued by the deposition of the coke, a product induced by hole direct oxidation of benzene, and the formation of the key active species O2-?, hydroxides will be chosen as the photocatalyst substrate to promote the formation of OH?, while the constitutions of semiconductor and thermal catalyst will be then localized at the hydroxides' surface, which serve as photo-active sites to initiate the formation of free radicals and reaction active sites to activate of O2, respectively. The preparation, characterization, and photocatalytic activity of the proposed photocatalyst will be investigated systematically, as well as the reaction mechanism. Through these works, the key components and their structures for high photocatalytic performance will be revealed, and the relationship between the structure and the photocatalytic activity can be established. The synergistic mechanism between the components will be then clarified in photo-excitation and surface reaction processes. The ultimate objective of this research is to develop a new research methodology for photocatalyst design and construction from the perspective of the interfacial reaction. We believe this work will provide a reliable theoretical guidance and practical reference for developing new photocatalyst which is suitable for a particular type of photocatalytic reaction.
英文关键词: Photocatalyst;Interfacial reaction-oriented;Construction;Design;Degradation of benzene