项目名称: 强电场条件下表面纳米尺度的电润湿性质研究

项目编号: No.20873033

项目类型: 面上项目

立项/批准年度: 2009

项目学科: 电工技术

项目作者: 王琛

作者单位: 国家纳米科学中心

项目金额: 46万元

中文摘要: 本项目的目标是利用原子力显微技术(Atomic Force Microscopy)和力谱方法研究探针和介质材料样品之间的作用力,探索在纳米尺度微区内介质材料表面的电润湿过程及规律。我们利用原子力力谱的方法研究了纳米尺度下材料表面的电润湿效应,利用针尖与样品之间的强电场观测到了完整的电润湿过程,从较低电场强度下的Young-Lippmann电润湿过程,到较高电场强度下的电润湿饱和,再到强电场情况下的电润湿下降过程。利用低剂量聚焦离子束加工的方法在介质材料聚二甲基硅氧烷(PDMS)表面上实现了尺寸在几十纳米范围的图形加工,而且通过控制束流密度和停留时间,可以在PDMS表面不同尺寸的突起结构或者孔结构,为下一步研究不同的表面结构对于材料表面电润湿效应的影响及其机理奠定了基础。我们发展了利用摩擦力显微分析方法研究纳米尺度下材料表面的电润湿效应,在强电场条件下研究了针尖与高分子薄膜表面之间的摩擦性质并提出与电润湿过程有密切联系的相关参数,从在摩擦力测量中完整表现出了不同电场强度下的电润湿过程特征。我们还通过引入TiO2纳米颗粒研究了表面介电性质对电润湿效应的影响及其机理。

中文关键词: 原子力显微技术;力谱;电润湿;强电场

英文摘要: We propose to investigate the interaction between the probe apex and material surfaces by using atomic force microscocpy (AFM) and force spectrum methods, focusing on the characteristics of electrowetting (EW) process at nanometer scale. In this project, the nanoscale elelbtrowetting phenomenon has been studied by using AFM force spectroscopy, entire electrowetting process was observed from ideal EW process (Young-Lippmann EW) at relatively low electric field, to EW satuation at higher electric field, and finally to EW breakdown at very high electric field. Nanofabrication on dielectric PDMS suface was performed by using low dosage focused ion beam (FIB). The protrotion and hole structures on PDMS surfaces with diameter of several tens of nanometers could be obtaned by tuning the ion density and dwelling time. This approach provides technique for pattered surface on insulators and soft polymers by FIB, and also provides structural basis for studing surface structure effect on EW mechanisms. Besides, we developed new method for investigating EW effect at nanoscale based on friction force microscopy (FFM). The FFM response to the EW process leads to the similar transitions from ideal EW to EW saturation and finally to EW breakdown. In addition, the effect of TiO2 nanoparticle doping on the EW of the dielectrics are also studied.

英文关键词: Atomic force miscroscopy; force spectroscopy; electrowetting; high eletric field

成为VIP会员查看完整内容
0

相关内容

专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
144+阅读 · 2021年2月3日
专知会员服务
28+阅读 · 2020年12月16日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
20+阅读 · 2021年9月21日
小贴士
相关VIP内容
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
144+阅读 · 2021年2月3日
专知会员服务
28+阅读 · 2020年12月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员