项目名称: 原位催化制备碳纳米管复合低碳MgO-C耐火材料及其高温使用性能

项目编号: No.51472184

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 张海军

作者单位: 武汉科技大学

项目金额: 83万元

中文摘要: 低碳耐火材料的研究对纯净钢冶炼和钢铁工业节能降耗具有重要的意义,碳纳米管具有非常好的高温性能,是很有发展前景的高性能结构陶瓷和耐火材料,但目前碳纳米管(CNTs)价格高及分散性差的缺点限制了其在耐火材料中的大规模应用。为解决该问题,本课题拟以单金属或双金属纳米颗粒溶胶为催化剂,采用催化热解酚醛树脂/沥青的工艺原位制备CNTs复合低碳MgO-C耐火材料。重点研究,1)胶体型Fe/Co/Ni单金属、双金属纳米催化剂的制备;2)酚醛树脂/沥青原位催化热解CNTs的合成控制;3)MgO晶须的原位催化合成以及纳米催化剂与低碳材料中抗氧化剂Si粉、Al粉等的作用;4)CNTs复合低碳MgO-C耐火材料的制备及高温使用性能研究等。通过研究为CNTs原位高效、低成本合成以及CNTs复合低碳MgO-C耐火材料的制备奠定理论基础,为我国纯净钢生产提供新型高效、长寿命、抗热震性能及抗侵蚀性能优良的低碳耐火制品。

中文关键词: 耐火材料;显微结构;高温性能;碳纳米管;催化

英文摘要: Low-carbon refractories are very important for clean steel production and energy-saving of iron-steel industry. Carbon nanotubes (CNTs), possessing many unique properties, are suitable candidates for high temperature applications of structural ceramics and refractories. However, the high production cost and its poor dispersing ability in matrix limits the application of CNTs in large scales in refractories. The present research project aims to in-stiu synthesize CNTs using transition monometallic and bimetallic nanoparticles as catalysts and phenolic resin/pitch as raw material. The following investigations will be carried out in the project, 1) The synthesis of Fe/Co/Ni monometallic and bimetallic nanoparticles; 2) The controlling formation of CNTs from phenolic resin/pitch using Fe/Co/Ni monometallic and bimetallic nanoparticles as catalysts; 3)The controlling formation of MgO whisker and the interaction of metallic nanoparticle catalysts with Si and Al powders;4) The preparation of low-carbon CNTs-MgO-C refractories and its high temperature properties. The basic theory on the formation of CNTs will be elucidated on the basis of the experimental results and new kinds of refractories with good thermal shock resistance, slag erosion resistance and long service life for clean steel production will be prepared.

英文关键词: Refractory;Microstructure;High-temperature properties;Carbon nanotube;Catalysis

成为VIP会员查看完整内容
0

相关内容

电力人工智能发展报告
专知会员服务
76+阅读 · 2022年4月11日
【报告分享】中国能源企业低碳转型白皮书,56页pdf
专知会员服务
21+阅读 · 2022年3月23日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
105+阅读 · 2020年11月27日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关VIP内容
电力人工智能发展报告
专知会员服务
76+阅读 · 2022年4月11日
【报告分享】中国能源企业低碳转型白皮书,56页pdf
专知会员服务
21+阅读 · 2022年3月23日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
105+阅读 · 2020年11月27日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员