项目名称: 气泡静电纺丝力学模型及其机理研究

项目编号: No.10872048

项目类型: 面上项目

立项/批准年度: 2009

项目学科: 生物科学

项目作者: 俞建勇

作者单位: 东华大学

项目金额: 36万元

中文摘要: 静电纺丝技术是目前获得纳米纤维的最重要也是最基本的方法之一,这种方法生产的纳米纤维已在医疗卫生、生物科技、环境工程、能源等多个领域取得了成功应用。然而,传统静电纺丝由于受溶液粘性的影响导致产率极低,已成为制约纳米纤维应用的瓶颈问题。申请者提出的高分子气泡静电纺丝技术是一种完全具有自主知识产权的新型静电纺丝技术,其主要原理是在自由液面产生气泡替代传统静电纺丝方法中的泰勒锥-带电悬浮小液滴,克服了传统静电纺丝方法的产量低、喷孔易堵塞、喷丝头相互干扰等先天不足,可以实现纳米纤维的批量化生产。本项目主要研究气泡静电纺丝过程中电场与流场的耦合力学模型,采用理论和实验并重的方法,探索高分子气泡静电纺丝机理,揭示有关物理现象和规律,为纳米纤维的批量化生产提供理论及实验依据。最后我们研究了纳米纤维膜在传感器上的应用,并取得有效成果。

中文关键词: 气泡静电纺;纳米纤维;工艺参数;机理研究;数值模拟

英文摘要: Electrospinning has become one of the most important and basic method for fabricating nanofibers. Because of their excellent properties such as high specific surface area, unique netted texture and porosity, the nanofibers produced by electrospinning have been widely applied to many fields,e.g., textile industry, environment engineering, bioscience and biotechnology, medicine and health, energy storage, military and anti-terrorism security. However, in consideration of the average diameter of electrospun fibers is hundreds of nanometers, almost belongs to micrometer, it is essential to decrease the fineness availably. Bubble-electrospinning, which is a potential technology for mass-production of nanofibers, is uniquely qualified to address this challenge. The flexibility and adaptation provided by the method have made the method a strong candidate for producing nanofibers on such a scale. In this project, we focus on the mathematical/physical model about he applied voltage,gravitational field and flow field, at the same time we do substantial experiments to regulate spinning condition in order to verify the model and to disclose the principle of bubble-electrospinng. At last, we research the application in QCM sensor and get a lot of achivements.

英文关键词: bubble-electrospinning;nanofiber;process parameter;principle;numerical simulation

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
34+阅读 · 2022年1月31日
【NeurIPS 2021】基于次模优化的规则学习算法框架
专知会员服务
33+阅读 · 2021年11月30日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年8月22日
专知会员服务
32+阅读 · 2021年6月18日
专知会员服务
31+阅读 · 2021年5月7日
知识增强的文本生成研究进展
专知会员服务
98+阅读 · 2021年3月6日
专知会员服务
23+阅读 · 2021年1月30日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
26+阅读 · 2018年2月27日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
34+阅读 · 2022年1月31日
【NeurIPS 2021】基于次模优化的规则学习算法框架
专知会员服务
33+阅读 · 2021年11月30日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年8月22日
专知会员服务
32+阅读 · 2021年6月18日
专知会员服务
31+阅读 · 2021年5月7日
知识增强的文本生成研究进展
专知会员服务
98+阅读 · 2021年3月6日
专知会员服务
23+阅读 · 2021年1月30日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员