项目名称: 超声介导携氧DDFP相变纳米微泡靶向溶栓治疗冠状动脉微循环栓塞
项目编号: No.81501495
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 医药、卫生
项目作者: 胡波
作者单位: 武汉大学
项目金额: 17万元
中文摘要: 急性心肌梗死(AMI)后及时清除冠脉微血栓、疏通微循环是AMI治疗关键。但冠脉微循环血栓治疗一直是临床上未能解决的难题。携氧DDFP相变纳米微泡的超声靶向溶栓疗法为AMI 冠脉微循环栓塞治疗提供新策略。在超声辐照介导下,携氧DDFP相变纳米微泡高效靶向输送同时,超声能量敏感型相变微泡将实现气液相变并产生持续、稳定的空化效应, 通过溶栓及携氧功能促冠脉微循环血运重建,达到治疗AMI目的。本研究主要研究内容为:制备超声能量敏感型DDFP相变纳米微泡及鉴定;应用超声辐照介导DDFP相变纳米微泡作用于人工血管血栓栓塞模型及猪冠脉微循环栓塞型急性心肌梗死模型,检测相变微泡溶栓、携氧功能、溶解冠脉微血栓及心功能改善情况。藉此建立一种安全、高效、无创的AMI冠脉微循环栓塞治疗方式。
中文关键词: 相变微泡;超声空化;急性心肌梗死;微循环栓塞;疗效评估
英文摘要: After the onset of acute myocardial infarction (AMI), the key of therapy is for immediate elimination of micro-thrombus and recanalization of micro-circulation at culprit coronary territory. However, effective thrombolytic therapy of coronary micro-embolization has always been an unsolved issue clinically. New tactic provided as ultrasound mediated targeted AMI micro-thrombolysis would be feasible with novel oxygen-carrying DDFP phase-change nano-scale agent. With ultrasonic irradiated targeting transport, DDFP nano-scale agent is capable of phase-changing into gas-core bubbles and activating to sustaining and stable cavitation effects, as it is sensitive to low acoustic energy. For its functions of thrombolysis and oxygen diffusion, recanalization of coronary micro-circulation and recovery of AMI can be achievable. Contents of our study are as below: Preparation and qualification of low-acoustic-energy sensitive DDFP phase-change nano-scale agent is the first step; With ultrasonic irradiation and models of in-vitro thrombus occlusion of artificial vessel and in-vivo coronary micro-embolism of AMI pigs, its therapeutic functions of thrombus dissolution and oxygen diffusion are to be evaluated as well as the improvements of coronary micro-circulation and cardiac function. By carrying out this study, a novel therapy of AMI coronary micro-embolization is to be established non-invasively with safety and high efficiency.
英文关键词: Phase change agent;Ultrasonic cavitation;Acute myocardial infarction;Microvascular embolism;Therapeutic evaluation