项目名称: 高性能聚合物电存储材料设计原理、制备与器件应用研究

项目编号: No.61274018

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 赵强

作者单位: 南京邮电大学

项目金额: 90万元

中文摘要: 聚合物电存储材料因其分子设计灵活,成膜性好,易加工,柔性,功耗低以及可实现三维存储技术、大大提高存储容量等优点,在信息存储器件等方面表现出极大潜力。目前已报道的聚合物存储材料与器件都是基于二进制(或二阶)体系。为了进一步提高数据存储的密度和容量,设计和开发具有三阶存储性能的聚合物电存储材料对发展下一代高密度数据存储器件非常重要。然而到目前为止还没有基于单分子聚合物的三阶电存储材料和器件的报道,主要由于设计原理的缺乏。在本项目中,我们旨在实现基于单分子聚合物的新型三阶电存储材料与器件。首先提出全新、有效的设计原理,即将多种存储机制,如构象转变机制与场致电荷转移机制相结合,构建多载流子传输通道,并通过器件优化,实现全新的具有三阶存储性能的聚合物电存储材料与器件。最终通过系统总结材料结构和器件存储性能之间关系,构建具有普适性的三阶聚合物电存储材料设计原理,从而为这一领域的发展提供新的思路和方向。

中文关键词: 光学信息存储;电存储;信息安全保护;磷光金属配合物;金属聚合物

英文摘要: Polymer electronic memory materials exhibit many merits, such as simplicity of structure, good scalability, low-cost potential, flexibility, 3D-stacking capability, and large capacity for data storage. Hence, they are very promising for application in information storage devices. Nowadays, the realization of polymer memory devices is still restricted to binary materials and based on the electrical bistability (i.e., "0" and "1") in response to an applied electric field. It is highly desirable to increase the number of memory states to three output signals of "0", "1" and "2", and achieve high-density and efficient memory devices. However, such kind of device has been less-explored due to the lack of appropriate design principles. In this project, we hope to realize the ternary memory materials and devices based on single polymer. First, the effective design principle by combining two switching mechanisms in one polymer system to form two conducting channels will be proposed. Based on this principle, polymer materials with ternary memory performances can be prepared, which will be used for fabricating the excellent ternary memory devices through device optimization. Finally, a versatile design principle for polymer ternary memory materials and devices will be constructed, which will provide new idea and direction

英文关键词: Optical information storage;Resistive memory;Information security protection;Phosphorescent metal complexes;Metai-containing polymers

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
77+阅读 · 2021年7月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
30+阅读 · 2021年1月9日
专知会员服务
15+阅读 · 2020年11月8日
专知会员服务
78+阅读 · 2020年8月4日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月20日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
11+阅读 · 2018年1月11日
小贴士
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
77+阅读 · 2021年7月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
30+阅读 · 2021年1月9日
专知会员服务
15+阅读 · 2020年11月8日
专知会员服务
78+阅读 · 2020年8月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员