项目名称: 航空发动机叶片修复中激光与材料相互作用机理及关键技术研究

项目编号: No.U1333121

项目类型: 联合基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 王涛

作者单位: 中国民航大学

项目金额: 40万元

中文摘要: 激光再制造能量可控、材料选择广,成为航空发动机叶片修复发展的新方向。激光粉末流和熔池存在能量、动量和质量传输物理行为,直接影响叶片修复后材料熔合、精度、变形与裂纹。 通过激光与材料相互作用研究,分析激光在超细金属粉末流中散射、衍射、吸收和透射机理,建立激光与粉末流和基体耦合模型;采用放样2D叶型曲线方法构建叶片缺陷模型,蚁群算法优化激光修复路径,正交试验方法确定最佳工艺参数。 开展SHPB实验,建立材料应力应变曲线,构建其动态本构关系,分析叶片变形机制及其动态力学行为,为叶片修复材料选择提供依据;分析叶片裂纹形成、成核与长大效应,探讨热冲击对损伤发展的影响机理。 有望在叶片激光修复理论、材料选择和质量与性能评价方面取得突破,研制出超细金属粉末输送系统、激光工作头、过程监测与光谱检测系统,建立叶片激光修复工艺数据库,制定质量与性能评价标准,为叶片激光修复工业应用提供理论依据和工艺参考。

中文关键词: 叶片;航空发动机;激光熔覆;;

英文摘要: Laser re-manufacturing is energy controllable with wide range of materials, thus becomes a new method for aero-engine blade repairs. Energy, momentum and mass are transferred with laser powder flow into the bath, affecting the fusion of materials, precision, deformation, and factures after the blade is repaired. A study on the interaction of laser and materials is conducted to analyze the scattering, diffraction, absorption, and transmission mechanism of laser in ultrafine metal powder flow, so to build a coupling model between laser and powder as well as the matrix. The laying-off 2D blade curving method is adopted to establish the defect model of the blade, the ant colony algorithm is applied to optimize the repair routes, and the orthogonal test is performed to determine the optimal processing parameters. SHPB experiment is developed to plot material stress strain curve, and build a dynamic constitutive relationship for analyzing the deformation mechanism and mechanic behaviors of the blade, such to provide evidences for selecting repair materials. The forming of cracks and nucleation and growth effects are also studied to explore the effect of thermal shock on the development of damage. A breakthrough is expected in the blade laser repair theory, selection of materials and the evaluation of quality an

英文关键词: Blade;Aero-engine;Laser cladding;;

成为VIP会员查看完整内容
0

相关内容

基于深度学习的计算机视觉研究新进展
专知会员服务
150+阅读 · 2022年4月21日
重磅!《人工智能白皮书(2022年)》发布,42页pdf
专知会员服务
477+阅读 · 2022年4月13日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
62+阅读 · 2022年3月20日
阿里达摩院十大科技趋势报告,31页pdf
专知会员服务
66+阅读 · 2021年12月29日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
12+阅读 · 2021年9月21日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
166+阅读 · 2019年12月4日
北京/济南内推 | 浪潮集团招聘AI算法工程师
PaperWeekly
0+阅读 · 2022年3月31日
计算机视觉,凉了?
CVer
2+阅读 · 2022年3月23日
招聘 | 平安人寿人工智能研发团队北京研发中心
PaperWeekly
11+阅读 · 2019年6月14日
【机器视觉】计算机视觉前沿技术探索
产业智能官
11+阅读 · 2018年12月25日
已删除
黑白之道
19+阅读 · 2018年12月23日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月1日
小贴士
相关VIP内容
基于深度学习的计算机视觉研究新进展
专知会员服务
150+阅读 · 2022年4月21日
重磅!《人工智能白皮书(2022年)》发布,42页pdf
专知会员服务
477+阅读 · 2022年4月13日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
62+阅读 · 2022年3月20日
阿里达摩院十大科技趋势报告,31页pdf
专知会员服务
66+阅读 · 2021年12月29日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
12+阅读 · 2021年9月21日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
166+阅读 · 2019年12月4日
相关资讯
北京/济南内推 | 浪潮集团招聘AI算法工程师
PaperWeekly
0+阅读 · 2022年3月31日
计算机视觉,凉了?
CVer
2+阅读 · 2022年3月23日
招聘 | 平安人寿人工智能研发团队北京研发中心
PaperWeekly
11+阅读 · 2019年6月14日
【机器视觉】计算机视觉前沿技术探索
产业智能官
11+阅读 · 2018年12月25日
已删除
黑白之道
19+阅读 · 2018年12月23日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员