项目名称: 动态环境下文化算法研究
项目编号: No.61262019
项目类型: 地区科学基金项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 黎明
作者单位: 南昌航空大学
项目金额: 50万元
中文摘要: 文化算法采用种群空间与信度空间双层进化结构,具有比传统进化计算更好的性能,但现有的文化算法缺乏较好的通用性,其模型仅是对人类社会进化的简单模拟,还不能有效解决动态环境下的复杂优化问题。本项目拟研究建立根据目标函数解析式估计求解问题难度方法,并采用最优吸引子理论分析进化过程估计求解问题优化特征因子,在此基础上建立自适应选择文化算法控制参数和控制策略的方法。研究建立动态环境模型,建立文化算法与动态环境的相互作用机制,研究建立在动态环境下的进化过程中保持遗传群体的基因多样性和文化的多样性的方法。建立具有进化群体时域和地域特征的文化形成、扩散、整合、冲突、消亡机制,并通过模拟人类社会部落聚居和城市发展过程,进一步完善文化进化模型。以此提高文化算法通用性,拓展其应用范围,并提高文化算法适应动态环境变化的能力,建立动态环境下文化算法的理论框架。
中文关键词: 文化算法;动态环境;优化难度;通用性;知识进化
英文摘要: Memetic algorithm (MA) has a double evolutionary structure which combines gene evolution with cultural evolution. The double evolutionary structure makes MA present better performance over traditional evolutionary algorithms, there are a lot of successful optimization instances of using MA to solve complicated optimization problems. Nevertheless, it is well established that depending on the property and complexity of a problem, a strategy of MA that may have proven to give performance advantage on a particular class of problems can only be achieved by accepting a tradeoff in performance degradation on other classes of problems, so a key drawback of MA is that in order for it to be useful on a certain problem instance, one often needs to carry out extensive tuning of the control parameters and to try different memes. Another drawback of MA is that MA's cultural model is only a simple mimic of human social evolution, and it may not solve some complicated optimization problems under dynamic environment. In order to find the methods of adaptively selecting control parameters and strategies for MA, this project plans to estimate the difficulty of optimization problem by construing the analysis formula of objective function and analyzing the information obtained from evolutionary procedure based on optimum attract
英文关键词: cultural algorithm;dynamic environment;optimization hardness;universality;knowledge evolutionary