项目名称: 常压脉冲协同射频辉光等离子体放电过程及其薄膜聚合沉积研究
项目编号: No.11475043
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 郭颖
作者单位: 东华大学
项目金额: 92万元
中文摘要: 常压辉光放电产生的等离子体虽然由于其特性在材料、生物和环境等领域体现了良好的应用前景,但存在的提高等离子体密度和降低气体温度的矛盾限制了其应用的拓展。本项目将对常压脉冲放电协同脉冲调制射频放电过程及其薄膜聚合沉积动力学进行研究。主要是研究脉冲调制射频辉光放电及其放电关闭阶段的高压脉冲放电的电离情况及放电结构(鞘层)的演变过程,揭示两种放电相互作用的物理机理及其对放电特性和稳定性的影响;探索常压PECVD中气相和固相产物质量输运及其形成过程中的主要物理化学反应和路径,研究主要活性粒子的能量、密度、团簇大小以及团聚或成核演变过程;结合数值模拟、等离子体实验诊断和薄膜结构,对常压脉冲协同射频放电等离子体聚合沉积动力学进行深入研究。发展一种低温下制备优质薄膜的高速沉积技术,满足新能源、新材料、环境等领域对低成本快速高效环保成膜方法的迫切需求。
中文关键词: 常压等离子体;协同放电;等离子体增强化学气相沉积;薄膜沉积;稳定性控制
英文摘要: Atmospheric pressure glow discharge plasmas have shown potential applications in the fields of material, biological and environmental, unfortunately, which is restricted by the contradiction of high plasma density and low gas temperature. The studies on discharge mechanism of atmospheric glow discharge with pulse collaborative RF excitation and polymerization in plasma thin film deposition is proposed in this project. The discharge mechanism and evolution of the discharge structure, especially the sheath structure, will investigated between the high voltage pulsed discharge and pulse modulated radio frequency glow discharge, which helps to explain the improvement on discharge characteristics and stability. In atmospheric PECVD, the travelling of products in gas and solid phase, which are generated by the elementary reaction, will be investigated especially the energy and density of reactive species, the size and evolution of cluster. The dynamics of plasma polymerization by atmospheric glow discharge with pulse collaborative RF excitation will be discussed with the results from numerical simulation, experimental diagnostics and structure of deposited film. It is proposed that a plasma deposition technique with low-temperature and high deposition rate will be developed, which meets the urgent demand of low cost and efficient thin film forming method in the areas of new energy, new materials, environmental and so on.
英文关键词: Atmospheric pressure plasma;Collaborative discharge;Plasma enhanced chemical vapor deposition;Thin film deposition;Stability control