项目名称: 狭缝涂覆技术结合高分子辅助化学溶液沉积法动态制备涂层导体带材工艺中关键问题研究

项目编号: No.51202202

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 雷鸣

作者单位: 西南交通大学

项目金额: 25万元

中文摘要: 本项目在具有独立知识产权的高温超导涂层导体带材连续制备系统上,探索狭缝涂覆技术与高分子辅助化学溶液沉积法结合动态制备涂层导体带材工艺过程中关键问题。本项目着重研究模唇几何参数、涂覆限速、溶液粘度、涂覆间隙、涂覆稳定性、动态热处理工艺曲线、炉内气氛等因素对带材性能的影响,结合Sartor有限元方法分析狭缝涂覆技术中的流场,确定最佳涂覆工艺参数,建立涂覆技术模型。对热处理工艺参数进行研究,探索狭缝涂覆技术化学法动态制备涂层导体薄膜的动态外延生长机理,建立生长模型。涂层导体带材研发目标:涂层导体带材1米, 缓冲层表面双轴织构,厚度达到﹥150nm,整体织构度﹥90%,表面完整连续,均匀一致。整体平均ω、Φ扫描半高宽<10 。表面粗糙度<5nm。YBCO超导层( Ic>100 A/cm, L>1 m)。

中文关键词: 涂层导体;缓冲层;狭缝涂敷技术;高分子辅助化学溶液沉积法;动态连续制备

英文摘要: A continuous preparation system of high-temperature superconducting coated conductor has been home-made with independent intellectual property. Base on it, key problem in the process of dynamic continuous preparation of coated conductors tape will be studied in this project by combining polymer assisted chemical solution deposition (PACSD) method with slot-die coating technology. The project will focused on the geometric parameters which will affect the performance of tape, such as die lip, limit coating speed, solution viscosity, coating gap, coating stability, dynamic heat treatment curve, furnace atmosphere and other factors. Sartor finite element method will be combined with to analysis the flow field in the slit coating technique, the optimum coating parameters will be got and coating technology model could be built. By study of heat treatment parameters, the dynamic epitaxial growth mechanism of the tape made by combining PACSD method and slot-die coating technology will be explored , and the growth model will be established. The goal of Coated conductor tape: length of 1 meter, the thickness of buffer layer above 150nm, the surface of the buffer layer must be bi-axially textured, the overall texture of the tape > 90%, the surface must be complete , continuous and uniform, the average of ω, Φ scan maximum

英文关键词: Coatedconductor;Buffer layer;Slot-die technique;Polymer assisted chemical solution deposition;dynamic continuous preparation

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
CCF MM专委会2022年第5期(总第四十五期)论文导读
专知会员服务
12+阅读 · 2022年3月8日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
38+阅读 · 2021年5月9日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
181+阅读 · 2020年9月12日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
43+阅读 · 2020年9月8日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
62+阅读 · 2020年7月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关主题
相关VIP内容
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
CCF MM专委会2022年第5期(总第四十五期)论文导读
专知会员服务
12+阅读 · 2022年3月8日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
38+阅读 · 2021年5月9日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
181+阅读 · 2020年9月12日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
43+阅读 · 2020年9月8日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
62+阅读 · 2020年7月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员