项目名称: 纳米间隙硅电极实现分子共振遂穿二极管

项目编号: No.21303171

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 向东

作者单位: 中国地质大学(武汉)

项目金额: 25万元

中文摘要: 由于分子具有体积小、自组装等优点,以分子为主体构建的分子器件,尤其是与硅基半导体微加工技术相兼容的分子器件,将在高度信息化社会里发挥越来越重要的作用。分子共振遂穿二极管是其中一种非常关键的分子器件。但是目前对分子共振遂穿的研究仅局限于实验室里扫描探针显微镜法。这里我们提出一种新的实现分子共振遂穿二极管的方法:1) 在技术上,结合硅微加工技术与机械可控裂结技术,获得在皮米级精度上调控间隙的纳米硅电极对,从而实现硅电极桥接的单分子结(硅-分子-硅)。2) 在原理上,获得硅电极桥接的单分子结后,利用硅材料电极具有禁带能级结构的特点,施加一定的偏置电压使得分子轨道能级与硅导带能级达到一致,使得电子通过共振遂穿效应通过分子结,实现分子共振遂穿二极管。这种新的共振遂穿方法符合硅基工业化批量生产的要求。此项目的实施将为单分子水平上的分子器件研制提供一个新的平台。

中文关键词: 分子器件;机械可控裂结技术;负微分电阻器件;电子输运;

英文摘要: Due to the unique features of molecules such as small size and self assembling, the molecule based devices, especially those devices compatible with micro-fabrication technology for semiconductor industry, will play more and more important role in the future information society. Molecule resonant tunneling diode (MRDT) is a key important molecule based devices. However, the MRDT related research is only limited to the approach employing scanning probe microscopy (SPM). Here, we put forward a new approach for MRDT using the forbidden band of bulk Silicon. 1) In technical aspect, the silicon based micro-fabrication technique combined with mechanically controllable break junction technique was employed. By this approach, pair silicon electrodes can be fabricated, in which the gap size between the two electrodes can be adjusted with sub-angstrom accuracy. Subsequently, a single molecular junction can be obtained. 2) In Method aspect, when the electron pass through the Si-Molecule-Si molecular junction, the molecule orbital can align with the conduct band or valance band of the silicon at certain bias voltage, which will result electron resonant tunneling through the molecular junction. This new mechanism fulfills the demand of commercial product for silicon based industry. This project will build a novel platform fo

英文关键词: Molecular device;Mechannically;controllable break junctions;Negative differential resistance devices;Electron transport

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
【NeurIPS2021】NeRV:视频的神经表示
专知会员服务
11+阅读 · 2021年10月28日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
22+阅读 · 2021年10月6日
专知会员服务
6+阅读 · 2021年9月20日
专知会员服务
31+阅读 · 2021年5月7日
使用深度学习,通过一个片段修饰进行分子优化
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
10+阅读 · 2018年3月23日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
【NeurIPS2021】NeRV:视频的神经表示
专知会员服务
11+阅读 · 2021年10月28日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
22+阅读 · 2021年10月6日
专知会员服务
6+阅读 · 2021年9月20日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员