项目名称: 基于氢键自组装的模块化荧光传感

项目编号: No.21475111

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 李顺华

作者单位: 厦门大学

项目金额: 82万元

中文摘要: 荧光传感作为一种灵敏、便捷的探测手段在生命和环境体系研究中广受重视,但高性能荧光探针的开发往往受到合成难度大和成功率低等因素的困扰。本项目采用模块化设计理念,提出了一种通用、高效的荧光传感体系构建方法。在模块化组装中,荧光探针的各功能亚单元被零件化,这些带有特定氢键链接基团的亚单元可高效地自组装成结构复杂化的超分子荧光探针。与传统的共价合成策略不同,该组装方式使得各亚单元可被分别合成、灵活更换,而且传感系统中亚单元的种类、数量和相对比例均可自如调整。因此,这种新的构建策略不仅将大幅度降低探针合成的难度,而且易于实现复杂的传感功能。基于该策略,本项目将建立一系列具有信号放大、比率响应或多组分同时识别功能的新型荧光传感体系,应用于生物活性分子、无机离子、气体和化学战剂等物种的检测。

中文关键词: 荧光探针;自组装;氢键;模块化;化学传感

英文摘要: Fluorescent molecular sensors offer a sensitive and straightforward approach to monitoring biologically or environmentally important targets. However, obtaining high-performance chemosensors are still challenging in terms of laborious synthesis and low success rate. In this project, we will develop a general and robust strategy for fabrication of fluorescent chemosensors. Under the concept of modularization, fluorescent sensory supramolecules can be efficiently formed by hydrogen-bonding self-assembly of linker-bearing subunits. In sharp contrast to traditional covalent fabrication strategy on a case-by-case basis, the subunits can be synthesized independently and interchanged between different sensing systems. Furthermore, the numbers, ratios and combination pattern of the subunits can be flexibly modulated to optimize the sensing performances. Therefore, our method not only remarkably reduces the synthesis difficulty but also enables the easy realization of complex functionality of fluorescent chemosensors. Based on this brand-new sensing strategy, an array of fluorescent sensory co-assemblies with desirable functions such as signal amplification, ratiometric responses or multitarget recognition will be developed for sensitive detection of bioactive small molecules, inorganic ions, gaseous species and chemical warfare agents.

英文关键词: fluorescent probes;self-assembly;hydrogen bonding;modularization;chemosensors

成为VIP会员查看完整内容
1

相关内容

MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
13+阅读 · 2022年3月18日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
35+阅读 · 2021年5月28日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
116+阅读 · 2021年4月29日
专知会员服务
29+阅读 · 2021年1月9日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
38+阅读 · 2020年3月10日
小贴士
相关主题
相关VIP内容
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
13+阅读 · 2022年3月18日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
35+阅读 · 2021年5月28日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
116+阅读 · 2021年4月29日
专知会员服务
29+阅读 · 2021年1月9日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员