项目名称: 光纤陀螺用超辐射发光二极管的中子辐射效应与加固方法研究

项目编号: No.61306052

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 焦健

作者单位: 中国科学院半导体研究所

项目金额: 25万元

中文摘要: 超辐射发光二极管作为光纤陀螺的理想光源,在用于空间、核爆炸等恶劣环境时会受到高能中子辐射,出现光电性能的严重退化,成为制约其应用领域扩展的重要因素。本项目通过开展1310nm超辐射发光二极管的中子辐射效应实验研究,得到器件的光电性能随中子注量变化的失效模式,分析器件的中子辐射失效机理。通过模拟中子辐射损伤的微观过程,开展器件抗中子辐射结构设计和工艺设计,采用半导体器件制备技术实现抗中子辐射加固的超辐射发光二极管样品,并对其进行辐射实验验证,获得样品的抗中子辐射程度。基于样品的辐射实验结果,进一步优化辐射损伤模型和器件结构设计,完善器件工艺,最终研制出满足(0.6~1)×1014n/cm2 (1MeV)中子辐照后输出功率变化率≤20%要求的加固样品。预期发表1~2 篇中子辐射损伤模拟技术的相关文章,申请专利1~2项,研究结果将进一步提升超辐射发光二极管的可靠性水平,推进航天用元器件的发展。

中文关键词: 超辐射发光二极管;中子辐射;损伤机理;抗辐射加固;

英文摘要: Superluminescent Diode(SLD) is the perfect light source for Fiber Optical Gyroscopes. The radiation exposure in bad environment can be detrimental to the SLDs to a large degree, which becomes an important restrictive factor of SLD's application. This Project is focus on the research of neutron irradiation effects in 1310nm SLDs, including: Failure mode of Photoelectric Properties vs. Neutron Fluence; Model and simulation of the damage mechanism by high-energy neutron; The structrue and process design of irradiation-hardened SLD; The implement of neutron irradiation-hardened SLD by semiconductor device technique and experiment validate on the effectiveness of the proposed design. Basic on the test result, the hardened devices with reduction of light output by ≤20% under (0.6~1)×1014n/cm2 (1MeV) neutron irradiation are achieved by the optimization of structrue design and preparation process. 1~2 Papers on the simulation of neutron irradiation damage mechanism are expect to be published, 1~2 Patents are expect to be applied and the research results will promote the development of high-reliability superluminescent diodes for aerospace application.

英文关键词: superluminescent diode;neutron irradiation;damage mechanism;radiation hardening;

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
13+阅读 · 2021年8月29日
专知会员服务
37+阅读 · 2021年5月9日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
才一年,智能车就不再是新势力专利!
量子位
0+阅读 · 2022年1月28日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
13+阅读 · 2021年8月29日
专知会员服务
37+阅读 · 2021年5月9日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员