项目名称: 纳米成像器件光子筛的逆向设计与特性研究

项目编号: No.61205212

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 张军勇

作者单位: 中国科学院上海光学精密机械研究所

项目金额: 24万元

中文摘要: 硬x射线到极紫外波段的纳米尺度聚焦成像研究是目前国内外研究的热点,它对于光刻技术、生命科学、环境科学、空间科学、材料科学和物理学领域中的应用具有重要的实际意义。由于在该波段材料的强吸收,无法使用传统的折反式光学元件使其成像,本课题基于几何光学和衍射光学理论,开展光子筛的逆向优化设计和成像特性研究。基于不同数值孔径下不同孔型光子筛的聚焦成像理论,将振幅和位相型光子筛由同轴聚焦成像模型拓展至离轴聚焦成像,使得光子筛具有了定向聚焦和分束的功能,这一功能大大增强了光子筛在光学系统中的结构形式。基于蒙特卡罗和迭代算法,根据输出光场的空间分布,逆向反演光子筛的结构参数,并进行全局优化设计。开展光子筛时间域内对超短脉冲的分束、光束整形和滤波研究。最后针对纳米成像元件光子筛的高色散特性,提出采用具有负焦点的衍射光学元件补偿光子筛的强色散,为进一步开展光子筛的宽带光色散补偿技术研究与应用提供思路和理论依据。

中文关键词: 光子筛;逆向设计;色散补偿;光束整形;蒙特卡罗算法

英文摘要: The nano-focusing and nano-imaging from hard x-rays to extreme ultraviolet (EUV) region have given more and more attention at home and abroad. It will be of momentous practical significance for some special subject, such as photolithography technology, life science, environmental science, space science, materials science and the application fields of physics, and so on. However, refractive lenses are prevented from the imaging and focusing in these spectral regions because of strong absorption of solid materials. Based on geometrical optics and diffractive optics, we study both nano-focusing and nano-imaging properties of diffractive optical element photon seives, and the inverse optimized design by use of Monte Carlo method and iteration algorithm. Relative to ours previous work on focusing and imaging of photon sieves composed of different types of pinholes on condition of different numerical aperture, we extend the in-line focusing and imaging into off-axis case, which can be applied to amplitude or phase photon sieves. Off-axis imaging not only makes photon sieves have directional focusing and beam splitting functionality, but also deeply improves the flexibility of optical system design. Meanwhile, with the help of Monte Carlo and iteration algorithm, the inverse problem of photon sieves design is investig

英文关键词: photon sieves;inverse design;dispersion compensation;beam shaping;Monte Carlo algorithm

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
21+阅读 · 2020年9月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
21+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员