项目名称: 用正电子湮灭研究电子俄歇复合机制

项目编号: No.11347011

项目类型: 专项基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 马晓光

作者单位: 鲁东大学

项目金额: 20万元

中文摘要: 从原子分子的层次上建立降低或消除非辐射复合过程的微观物理模型,探索辐射复合效率与载流子输运机制之间的关系以提高纳米发光材料的量子发光效率,是目前LED发光基础研究领域的热点。利用正电子湮灭过程俄歇谱没有背景散射的优点,本项目拟从原子分子水平上研究纳米和分子发光材料的发光效率与载流子输运及复合机制之间的关系,找到微观量子输运通道与俄歇复合过程之间的关系。从原子分子的激发及其自电离的角度研究和分析各种俄歇复合过程产生的物理机制,包括原子间共振,固体能带间和能带内共振引发的俄歇电子发射现象;运用费曼图分析在复杂环境下各种俄歇复合过程的分枝比,探求主要的俄歇复合机制,进而从原子分子层次上揭示这些主要的俄歇复合过程导致发光效率下降的原因。本项目研究目标是建立共振俄歇复合过程与材料中原子间距离、掺杂原子种类及掺杂比例之间的关系,为遏制俄歇复合过程发生提供调控模型和有效的解决方案。

中文关键词: 俄歇复合;正电子湮灭;原子间共振;电子关联;量子输运

英文摘要: At high driven currents, the internal quantum efficiency of LED will decrease nonlinearly and even some parts of spectra will lose the ability. These factors will restrict the application of high-brightness LED. Therefore, the investigation on the microscopic physical mechanism of LHD emitting efficiency will have important theoretical significance and practical values. It was found that the Auger recombination process indeed caused the non-linear decline of the efficiency in the InGaN light-emitting materials. However, no any reasonable theoretical demonstration has been given yet. It is one of the important research subjects to establish the physical models and study the realtionship between the emitting efficiency and the transport mechanism f carrier based on the atomic and molecular theory, in order to increase the irradiated recombination process and increase the quantum luminescence efficiently. Due to the advantage of the positron annihiliation process that there is no background signal for Auger recombination process in the spectra of annihilation process, we use the positron annihiliation process to study the Auger recombination process in molecules. The project intends to combine solid band theory and many-body perturbation representation of micro-resonant Auger recombination process to study the nonl

英文关键词: Auger recombination;positron annihiliation;interatomic resonance;electron correlation;quantum transport

成为VIP会员查看完整内容
0

相关内容

【干货书】贝叶斯统计分析方法,697页pdf
专知会员服务
113+阅读 · 2021年12月18日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
42+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
安全和健壮的医疗机器学习综述,附22页pdf
专知会员服务
46+阅读 · 2020年1月25日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
58+阅读 · 2021年11月15日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Arxiv
15+阅读 · 2019年6月25日
小贴士
相关VIP内容
【干货书】贝叶斯统计分析方法,697页pdf
专知会员服务
113+阅读 · 2021年12月18日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
42+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
安全和健壮的医疗机器学习综述,附22页pdf
专知会员服务
46+阅读 · 2020年1月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员