项目名称: InN金属-绝缘体-半导体器件的制作及低温输运测量

项目编号: No.11204334

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 康亭亭

作者单位: 中国科学院上海技术物理研究所

项目金额: 30万元

中文摘要: 本研究将致力于制作氮化铟(InN)金属-绝缘体-半导体(MIS)器件结构,并对其做低温电学输运的测量,研究InN 表面电子聚积层的输运特性,以期能够找到控制InN 表面态输运的方法。我们所要采用的MIS结构能够很方便的在各种极端条件下实现肖特基接触。这解决了InN研究界广泛使用的电解液接触只能在室温附近稳定使用的不便。利用MIS结构,我们将尝试控制InN 表面态中的电子浓度,再利用低温和变温的手段,找到InN 表面态中的电子结构的变化的规律。 同时,一些有趣的问题,比如InN中由表面态输运到体材料输运的转变,InN 表面层中的多子带输运,也有望被观察到。我们的工作还能验证一些研究InN 表面层的间接方法(比如多层模型)的有效性。本研究包括了InN材料生长,器件制作和低温电学测量几部分,将加深人们对InN的器件应用和物理特性的了解。

中文关键词: 氮化铟;金属-绝缘体-半导体器件;表面;光电导;

英文摘要: Indium nitride (InN), as a promising semiconductor for infrared and electronic application, has always been a popular research topic in worldwide. However, on InN surface, there is a unique surface state-surface electron accumulation layer(SEAL), which hampers the efforts in realizing p-type InN, Schottky contact to InN and related InN devices. We devote ourselves to the fabrication of InN Metal-Insulator-Semiconductor(MIS) structures and the low-temperature transport measurements of this MIS structures. We are mostly interested in the transport properties of InN SEAL, which may find a way to control the transport behavior of InN SEAL. So that the understanding of P-type InN can be improved. Compared with the widely used electrolyte-based Schottky contact(which is only stable near room temperature and not convenient due to its big size,liquid form and active chemical property) to InN , the MIS structure is much stable against the extreme experimental condition, like the routine low temperature(77K,4.2 K or below) required by electrical transport experiments. Using this InN MIS structure, we will try to modulate the electron concentration in SEAL. Then combining the method of low-temperature and temperature-varying measurements, we may find some important rules governing the evolution of the electronic structur

英文关键词: InN;Metal-Insulator-Semiconductor;surface;photoconductivity;

成为VIP会员查看完整内容
0

相关内容

【新书】统计学傻瓜式入门第二版,451页pdf
专知会员服务
110+阅读 · 2021年11月5日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
34+阅读 · 2021年5月12日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
98+阅读 · 2021年3月25日
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
13+阅读 · 2020年8月3日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Arxiv
12+阅读 · 2018年1月28日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员