项目名称: 加工状态下数控机床性能状态在线监测方法研究
项目编号: No.51275187
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 机械、仪表工业
项目作者: 刘红奇
作者单位: 华中科技大学
项目金额: 80万元
中文摘要: 加工性能劣化是当前影响加工效率、加工质量和可靠性的主要因素之一,对数控机床的性能监测提出了迫切需求。现有监测方法难以满足加工状态下数控机床性能在线监测的要求,为此开展性能监测的新方法研究。研究思路是通过研究机床固有特性对机床传动系统能量传递过程的影响机理,深入分析长时间的工况激励谱及其统计特征,提出基于驱动电流与位置反馈(速度)等能量响应信号的谱统计特征的固有频率和阻尼特性的辨识方法,结合动态精度参数,构建面向机床性能状态辨识的特征集以及机床性能状态的预测模型,实现数控机床性能状态在线监测系统。通过本项目的研究将为基于性能状态的维护和主动控制提供判断依据,提升我国数控机床的智能化水平。
中文关键词: 机床性能状态;固有特性;在线监测;;
英文摘要: Machining performance degradation is one of the current main factors that affect the processing efficiency, processing quality and reliability. Online monitoring the CNC machine tools performance is the urgent needs at present. The present monitoring methods are difficult to meet the requirements of the online monitoring of CNC machine tools performance in the machining status, then the project is proposed to study a new performance online monitoring methods . The project aims the theoretical and experimental research about the online monitoring of the machine tools performance state through the CNC machine tool servo drive currents and position feedback signs. The project study the influencing mechanism of the machine inherent characteristics on the machine drive system energy transfer process. Based on the long period working condition excitation spectrum and the statistical characteristics, the project proposed the Identification method to get the natural frequency and damping based on the energy response of the signal spectral statistical characteristics. The performance feature set and the prediction model for state the machine performance of the machine tool are built combined with the dynamic characteristics and accuracy parameters. The machine tools performance status of online monitoring system is deve
英文关键词: Performance of CNC machine tools;Inherent characteristics;Online monitoring;;