项目名称: 应力调制下II-VI族纳米材料光学特性及光-物质强耦合研究

项目编号: No.11474297

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 孙聊新

作者单位: 中国科学院上海技术物理研究所

项目金额: 90万元

中文摘要: 半导体纳米材料由于极其微小的尺度、大的体表比及高晶体质量,从而具有了非常显著的结构弹性和破裂极限强度。这为通过精确操控应力来调制材料物理特性提供了新的可能性。我们将以II-VI族代表性半导体材料硫化镉 (CdS)纳米结构为研究载体,全面细致澄清应力对CdS纳米材料的能带、线性及非线性光学性质、微腔-激子强耦合效应的调控作用;理论上构建合理的机械应力调制下纳米材料光学特性转变的模型;探索更加有效的纳米-机械结合的调控手段;发展更加低成本、高稳定度的纳米光-机械耦合器件。以此为基础,进一步研究其他形貌更加丰富的II-VI族纳米材料在应力调控下的物理特性及潜在的应用可能性。该课题研究成果将为以纳米材料为基础的功能化光电子器件提供高效的机械式控制手段,扩展纳米光电子器件在发光、传感、光伏以及通信等领域的应用。

中文关键词: 荧光光谱;微纳结构;应力;激子极化激元

英文摘要: Semiconductor nanomateials possess significant struture elasticity and fracture limit strength because of their micro-size, large surface-volume ratio and high crystal quality, this leads to new possibilities for tuning the physical properties of a mateial by precisely controlling strain. In this project, the CdS nanostructure, a typical group II-VI semiconductor material, is chosen as test-bed, the energy band shifts, the linear and nonlinear optical properties and cavity-exciton strong coupling effect under strain engineering will be studied comprehensively; the theoretical model for strain-modulated optical property changing will be proposed; the more effetive controlability of mechanics-nanostructure coupling will be explored, and low-cost, high stable nano-optics-mechanics coupled devices will be finally developed. Furthermore, strain engineering will be also expanded to the other goup II-VI nano-materials with much richer surface morphologies, in which the corresponding physics and potential applications will be explored. The output of the project will provide high efficient mechanical ways to control nanostructure-based functional optoelectronic devices, and will also find a wide range of applications of nano-optoelectronic devices in emission, sensor, photovoltaic and communications.

英文关键词: Photoluminescence;nanostructure;strain;exciton polariton

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
41+阅读 · 2022年4月4日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
53+阅读 · 2021年10月16日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
33+阅读 · 2021年5月7日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
80+阅读 · 2020年6月11日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员