项目名称: 类吡啶分子系统对贵金属薄膜的纳米制造基础研究

项目编号: No.51303100

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 杨鹏

作者单位: 陕西师范大学

项目金额: 25万元

中文摘要: 微纳米制造产出了超过260亿美元的集成电路产品。提高分辨率和降低成本一直是微纳米制造领域的追求目标,而传统光刻蚀策略已经不能满足超精细刻蚀技术如亚10纳米刻蚀水平的要求。本研究旨在揭示新发现的核酸催化金刻蚀规律的基础上,研究和开发本质上不同于光刻蚀的纳米制造新技术,从而解决纳米制造过程中的关键核心难题。本研究首先探索在弱氧化环境下,吡啶基元与贵金属离子之间的配位过程,研究该配位产物对于贵金属氧化还原电位的影响,最终在揭示吡啶催化的氧化刻蚀机理之上,逐步建立一整套利用含类吡啶基元结构的大分子(生物大分子如DNA和合成高分子如聚乙烯基吡啶)来实现贵金属材料微纳米尺度刻蚀的科学方法。该方法过程简单,不使用对环境污染严重的液、气体以及高温、高腐蚀性条件;力争实现单分子水平刻蚀,从而满足亚10纳米刻蚀要求。本课题将开拓新的研究领域,并刺激新一代亚10纳米刻蚀方法发展以适应未来电子和半导体工业的需要。

中文关键词: 溶菌酶;蛋白质组装;类淀粉样积聚;刻蚀;表面改性

英文摘要: Micro- and nano-fabrication produce IC products of more than 26 billion $. Improving the resolution and reducing the cost of micro/nano-fabrication has been a persistant goal in this field. However,the traditional photolithography strategy could not meet the requirements of the ultra-high etching resolution, such as sub-10 nanometer lithography level. The purpose of this study is to reveal the reaction mechanism of the newly discovered oxidative etching on gold by pyridine-like structures, and then develop one set of novel next-generation sub-10 nm nanofabrication methodology, so as to solve the the key core problem during nano-fabrication process. In this study, we firstly explore the coordination process between pyridine units and noble metal ions in a weakly oxidizing environment; then study the effect of the resulting coordination product on the redox potential of nobel metal; finally elucidate the possible etching reaction scheme of this pyridine-catalyzed oxidation on noble metal substrates, and progressively establish a full set of methodolgy to achieve nanofabrication of noble metal film by using AAO (Anodic Aluminum Oxide) hard templating and molecular assembly soft templating.Functional molecular assembly soft template is provided by using pyridine-derivatized structures such as DNA and poly(vinyl pyr

英文关键词: Lysozyme;Protein Assembly;Amyloid;Lithography;Surface Modification

成为VIP会员查看完整内容
0

相关内容

KDD 2021 | MoCL:利用多层次领域知识的分子图对比学习
专知会员服务
10+阅读 · 2022年5月20日
人工智能到深度学习:药物发现的机器智能方法
专知会员服务
36+阅读 · 2022年5月6日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年5月27日
Arxiv
0+阅读 · 2022年5月26日
Proximal Estimation and Inference
Arxiv
0+阅读 · 2022年5月26日
Arxiv
0+阅读 · 2022年5月25日
Arxiv
0+阅读 · 2022年5月25日
Phase-aware Speech Enhancement with Deep Complex U-Net
小贴士
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员