项目名称: 铝合金阳极氧化界面特性及疲劳性能影响机制
项目编号: No.51471156
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 卫国英
作者单位: 中国计量大学
项目金额: 80万元
中文摘要: 铝合金由于其低密度、高强度等优良性能广泛应用于航空航天、交通运输及民用建筑行业。为提高铝合金的表面特性,通常在酸溶液中对其进行阳极氧化以生成氧化膜。阳极氧化过程中氧化膜的形成、生长及其与表面的交互作用直接影响到铝合金材料的疲劳性能。本项目拟采用环保型有机-无机混合酸液对铝合金航空材料进行阳极氧化,观测阳极氧化过程中铝合金与氧化膜之间的界面特性,揭示氧化膜的初始生长、溶解及周期性孔穴的形成机理;探究不同类型酸及添加剂对阳极氧化过程动力学、氧化膜生长、溶解机理及氧化膜阻挡层与多孔层厚度的影响机制;优化阳极氧化膜的环保制备技术,研究前处理参量与阳极氧化工艺对铝合金氧化膜厚度、纳米级孔穴尺寸及疲劳性能的影响规律;研究氧化膜疲劳裂纹源的产生机制、临界裂纹长度及断口形貌的特征,揭示氧化膜-基材界面特性与疲劳性能之间的关联机制。项目的实施将为铝合金航空件阳极氧化所导致的疲劳性能下降提供有效的解决方法。
中文关键词: 铝合金;阳极氧化;疲劳性能;界面结构
英文摘要: Aluminum alloys can be widely used in aerospace, transportation and construction industries due to the lower density, higher strength and optimal ductility. In order to improve surface characteristics of aluminum alloys, acid solution is usually utilized to form anodized oxide films on the surface of aluminum alloys. During the anodization process, formation and surface interactions of anodized films directly affect the fatigue performance of aluminum alloys. Organic and inorganic mixed acid solutions is used to anodize the aluminum alloys to observe surface characteristics between aluminum alloys and oxide films in order to reveal initial growth, dissolution and formation mechanism of oxide films. The project intends to investigate the effects of different acid solutions and additives on the kinetics, growth, dissolution mechanism, thickness of barrier and porous layers of oxide films. It is significant to optimize environmental-friendly preparation technology of aluminum oxide films to investigate influence of operating parameters on thickness, hole size and fatigue performance of aluminum oxide films. Moreover, formation mechanism of fatigue cracks and fracture morphology will be explored in the project to reveal relationship among oxide films, substrate characteristics and fatigue performances. The purpose of the project is to provide effective solutions for fatigue decline problems during anodization process of aircraft aluminum alloys.
英文关键词: Alluminum alloy;Anodization;Fatigue properties;Interfacial structure