项目名称: 石墨烯磨损性能及磨损机制的纳米力学实验研究

项目编号: No.11272177

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李群仰

作者单位: 清华大学

项目金额: 95万元

中文摘要: 石墨烯作为新型二维材料在微电子、传感、新能源以及润滑等众多领域拥有广阔的潜在应用前景。然而,相比其光、电、热等物理性质的深入研究,人们对石墨烯力学性能,特别是它在与周围环境相互作用(如接触、滑动等)中所具备的力学强度,却了解甚少。本项目拟从纳米尺度上,系统地研究石墨烯在不同力、热、电载荷下的磨损性能。具体来讲,本项目将发展基于原子力显微镜系统的纳米磨损测试平台,并初步建立一套二维材料纳米尺度磨损检测的实验规范。利用所发展的实验手段,研究并揭示外界条件(如温度、速度、湿度、基底粘着力强度等)以及内部分子结构缺陷对石墨烯磨损性能的影响,并为石墨烯在微器件以及固态润滑领域的工程应用提供相关的材料数据和力学性能预测。最后,基于实验和分析结果,本项目将从力学和物理角度探讨分子层面上磨损的一般机理,为推动基于微观机制的新一代磨损理论的建立奠定基础。

中文关键词: 石墨烯;二维材料;摩擦;磨损;润滑

英文摘要: As a novel two-dimensional (2D) material, graphene has been shown to have many fascinating potential applications in microelectronics, sensing devices, energy harnessing and storage as well as solid surface lubrication. Nevertheless, in contrast to the enormous studies on optical, electric and thermal properties of graphene, much less has been done to understand how graphene interacts with its surroundings through mechanical contacts. In this proposed work, we will systematically study the nano-scale wear property of graphene when it is subjected to various mechanical, thermal and electric loads. More specifically, we will first develop a universal platform and the experimental protocols to characterize nano-scale wear of atomically-thin 2D materials. Utilizing the established experimental platform, we will study and elucidate the effects of external loading conditions (e.g. temperature, sliding speed, humidity, substrate adhesion and internal atomic defects) on nano-scale wear property of graphene. The findings will provide useful materials data and help establish mechanical models for graphene devices/structures used in microelectronics and lubrication applications. Last but not least, we will explore the molecular origins of wear based on mechanics and physics modeling of the experimental results, which we be

英文关键词: graphene;two-dimensional materials;friction;wear;lubrication

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
深度学习模型鲁棒性研究综述
专知会员服务
88+阅读 · 2022年1月23日
卷积神经网络中的注意力机制综述
专知会员服务
75+阅读 · 2021年10月22日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
219+阅读 · 2020年8月1日
基于深度学习的表面缺陷检测方法综述
专知会员服务
84+阅读 · 2020年5月31日
多重监管之下,谁还在“挖矿”?
CCF计算机安全专委会
0+阅读 · 2022年4月14日
「深度学习模型鲁棒性」最新2022综述
专知
7+阅读 · 2022年1月23日
6G全球进展与发展展望白皮书,35页pdf
专知
19+阅读 · 2021年5月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
32+阅读 · 2022年2月15日
Arxiv
102+阅读 · 2021年6月8日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
19+阅读 · 2020年12月23日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关主题
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
深度学习模型鲁棒性研究综述
专知会员服务
88+阅读 · 2022年1月23日
卷积神经网络中的注意力机制综述
专知会员服务
75+阅读 · 2021年10月22日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
219+阅读 · 2020年8月1日
基于深度学习的表面缺陷检测方法综述
专知会员服务
84+阅读 · 2020年5月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
相关论文
Arxiv
32+阅读 · 2022年2月15日
Arxiv
102+阅读 · 2021年6月8日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
19+阅读 · 2020年12月23日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
12+阅读 · 2019年4月9日
微信扫码咨询专知VIP会员