项目名称: 基于多尺度分析和局部三进制模式的热红外人脸鲁棒识别研究

项目编号: No.61201456

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 电子学与信息系统

项目作者: 谢志华

作者单位: 江西科技师范大学

项目金额: 24万元

中文摘要: 可见光人脸识别面临光照变化、化妆、姿态等因素影响问题。热红外人脸识别具有消除光照及阴影的影响、实现全天候识别等特点,成为弥补可见光人脸识别不足的重要途径。基于红外人脸图像易受环境温度影响的特点,项目组提出了基于LBP的局部特征提取方法(OPT ENG,2011),表明局部特征更有利于鲁棒红外人脸识别。在此基础上,本项目研究基于多尺度分析和LTP的特征提取方法,从三个方面提高红外人脸识别的鲁棒性:①研究多尺度变换下LTP可分性评价标准,选择最适合识别的多尺度变换;②基于可分析和鲁棒性两个目标,采用多目标优化算法,研究面向多尺度分析的自适应阈值LTP;③通过隐马尔科夫树模型(HMT)对多尺度的LTP 系数特征进行统计建模,提出一种基于隐马尔科夫树模型的特征抽取方法。通过本项目的研究,探索多尺度变换与LTP最优结合的理论,为开发一套具有自主版权、无需严格约束高性能红外人脸识别系统打下坚实的基础。

中文关键词: 红外人脸识别;多尺度分析;共生直方图;局部二进制模式;时延数据

英文摘要: Face recogniton suffers from the problems such as illumination change, disguise and pose variations. The thermal face images reflect the physical (temperature) characteristics of face, which would not be affected by external light and disguise. Additionally, an infrared face recognition system can work on all-weather conditions and has no shadow problem. So, infrared face recognition is an active research area of face recognition.In 2011, this project team have proposed infrared face recognition based on LBP(OPT ENG, 2011),which shows that local feature extraction is appreciated for infrared image.To improve robustness of local feature extraction,this research project focuses on infrared face extraction method based on multiscale analysis and local ternary pattern(LTP).The main missions of this project are: ①Based on the separability discriminant criterion in multiscae LTP domain, the most suitable multiscae transform is selected;② Adaptive threshold LTP in multiscale transform domain is developed according to multi-objecte volutionary algorithms ( separabielity discriminant and robust); ③ Multiscale LTP patterns statistical modeling is applied to multiscale LTP patterns and model parameters are calculated by Hidden Markov Tree(HMT).The purpose of the project explores the theory optimization combining multiscal

英文关键词: Infrared face recognition;multiscacle analysis;Co-occurence histogram;Local binary pattern;time-elasping data

成为VIP会员查看完整内容
0

相关内容

基于深度学习的图像目标检测算法综述
专知会员服务
97+阅读 · 2022年4月15日
【CVPR2022】基于鲁棒区域特征生成的零样本目标检测
专知会员服务
10+阅读 · 2022年3月22日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
深度学习人脸特征点自动定位综述
专知会员服务
23+阅读 · 2021年12月1日
专知会员服务
35+阅读 · 2021年8月27日
专知会员服务
41+阅读 · 2021年6月21日
专知会员服务
54+阅读 · 2021年6月15日
专知会员服务
122+阅读 · 2021年4月29日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
视频人脸识别进展综述
专知会员服务
55+阅读 · 2021年3月12日
双创基地突围,郑州金水的创新模式
36氪
0+阅读 · 2022年3月11日
【速览】IJCV 2022 | 自适应干扰解耦学习的人脸表情识别方法(ADDL)
中国图象图形学学会CSIG
6+阅读 · 2022年2月15日
利用 OpenCV+ConvNets 检测几何图形
极市平台
0+阅读 · 2022年1月26日
深度学习人脸特征点自动定位综述
专知
0+阅读 · 2021年12月1日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
【CVPR2021】多实例主动学习目标检测
专知
2+阅读 · 2021年4月19日
综述 | SLAM回环检测方法
计算机视觉life
15+阅读 · 2019年8月19日
已删除
将门创投
12+阅读 · 2018年6月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2021年10月22日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
小贴士
相关VIP内容
基于深度学习的图像目标检测算法综述
专知会员服务
97+阅读 · 2022年4月15日
【CVPR2022】基于鲁棒区域特征生成的零样本目标检测
专知会员服务
10+阅读 · 2022年3月22日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
深度学习人脸特征点自动定位综述
专知会员服务
23+阅读 · 2021年12月1日
专知会员服务
35+阅读 · 2021年8月27日
专知会员服务
41+阅读 · 2021年6月21日
专知会员服务
54+阅读 · 2021年6月15日
专知会员服务
122+阅读 · 2021年4月29日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
视频人脸识别进展综述
专知会员服务
55+阅读 · 2021年3月12日
相关资讯
双创基地突围,郑州金水的创新模式
36氪
0+阅读 · 2022年3月11日
【速览】IJCV 2022 | 自适应干扰解耦学习的人脸表情识别方法(ADDL)
中国图象图形学学会CSIG
6+阅读 · 2022年2月15日
利用 OpenCV+ConvNets 检测几何图形
极市平台
0+阅读 · 2022年1月26日
深度学习人脸特征点自动定位综述
专知
0+阅读 · 2021年12月1日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
【CVPR2021】多实例主动学习目标检测
专知
2+阅读 · 2021年4月19日
综述 | SLAM回环检测方法
计算机视觉life
15+阅读 · 2019年8月19日
已删除
将门创投
12+阅读 · 2018年6月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员