项目名称: 飞秒级瞬态过程的数字全息极高速分幅成像技术研究

项目编号: No.61308035

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 陆小微

作者单位: 深圳大学

项目金额: 25万元

中文摘要: 高速成像技术的实质是时间放大,它将远超出人眼时间分辨能力的瞬态过程快速记录并通过慢回放放大时间尺度,是目前研究瞬态事件的有力工具,被广泛应用于化学、物理、生物等领域。近年来随着科学研究的发展,对于高速成像的需要已经深入到飞秒量级,在这个尺度上,飞秒数字全息极高速分幅成像技术就显得尤为重要。 本项目立足于申请人前期在超短激光脉冲全息成像原理和方法方面的积累,旨在发展适用于飞秒级瞬态过程研究的数字全息极高速分幅成像技术。在分幅与极高速形成这个关键模块中,针对两类飞秒级瞬态过程,项目分别提出单脉冲可控波前编码方法和多脉冲分幅时间可调序列成像脉冲产生方法;在同步控制模块中,采用自制电子控制电路实现多元件的纳秒级精确同步控制。本项目提出的包含两种分幅方式的系统,预计都可实现成像时间分辨率35fs,成像频率10^13 fps的指标,该技术为原子时间的成像提供一种新型有效的手段。

中文关键词: 飞秒数字全息;分幅;瞬态过程;可控波前编码;可调分幅时间

英文摘要: The essence of the high-speed imaging technology is time expanding. It can record the transient process which beyond the time resolution of human eye, and playback slowly with normal speed. It is a powerful tool for study of transient events and widely used in chemistry, physics, biology and other fields. In recent years, with the development of scientific research, the studies of high-speed imaging have going into femtosecond order. In this scale, femtosecond digital holographic imaging technology with extremely high speed framing rate is of particularly important. The project is based on the applicant's post research of holographic imaging with ultra-short laser pulse. Its goal is to develop an extremely high-speed digital holographic framing imaging system. For framing and high-speed formation of the system, two methods were proposed regarding to two typical kinds of femtosecond order process. One is controllable wavefront encoding of single pulse and the other is adjustable framing time of multi-pulse to generate sequence pulse train. For synchronization control, we use special designed electronic control circuit to realize precise synchronization control with nanosecond. 35fs imaging time resolution and 10^13 fps imaging frequency could be achieved of the presented system in this project which contains two

英文关键词: femtosecond digital holography;framing;transient events;controllable wavefront encoding;adjustable framing time

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
19+阅读 · 2022年4月15日
专知会员服务
30+阅读 · 2021年8月16日
专知会员服务
64+阅读 · 2021年7月1日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
32+阅读 · 2021年2月17日
还在修改博士论文?这份《博士论文写作技巧》为你指南
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
自动驾驶仿真软件列表
智能交通技术
13+阅读 · 2019年5月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
19+阅读 · 2018年3月28日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
19+阅读 · 2022年4月15日
专知会员服务
30+阅读 · 2021年8月16日
专知会员服务
64+阅读 · 2021年7月1日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
32+阅读 · 2021年2月17日
还在修改博士论文?这份《博士论文写作技巧》为你指南
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员