项目名称: 含大规模电动汽车的主动配电系统及充电基础设施协同规划理论研究
项目编号: No.51307115
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 电工技术
项目作者: 穆云飞
作者单位: 天津大学
项目金额: 24万元
中文摘要: 未来电动汽车(EV)的大规模应用给配电系统及充电基础设施的规划提出了挑战:首先EV并网引入大量不确定性环节,如负荷时空分布的复杂性,电池充放电特性的多样性等;同时作为移动储能装置,EV经充电基础设施可与系统实现友好互动,使得配电系统具有多源主动性特征。众多交织复杂因素不仅使原本已NP难的配电系统规划问题愈加复杂,还需充电设施的合理规划。针对此难题,本项目拟在如下领域取得突破:结合智能交通仿真技术构建EV的时空分布模型,以精确预测EV负荷的时空分布及系统响应能力;进一步,利用协同优化算法构建配电系统及充电基础设施的协同规化模型,包含充电基础设施选址与容量配置、配电系统规划两个子系统规化问题,并研究高效智能算法求取最优协同规划方案;最后将前述研究成果转化为实用算法和程序,并在实际配电系统及充电设施规划中加以应用。本项目研究成果将为EV的普及、配电系统及充电基础设施的规划提供理论支持和技术保障。
中文关键词: 电动汽车;充电基础设施;配电网;协同规划;时空分布
英文摘要: The large scale deployment of electric vehicles (EV)in the future presents significant challenges to the planning of the distribution system and charging facilities. Firstly, the integration of EV brings a lot of uncertainties, such as the load complexity of spatial and temporal distribution, and the diversity of charging/discharging characteristics, etc. Meanwhile, as a kind of mobile energy storage system, EVs can realize friendly interaction with the distribution sytem, which endows the distribution system with a multi-source initiative characteristic. So many complex factors interacting with each other not only makes the planning of distribution system, which is already a NP-hard problem, even more complex, but also brings resonable planning requirement to the EV charging facilities. To address this problem, this research project intends to achieve breakthroughs in the following areas: 1) A Spatial-Temporal Model (STM) based on intelligent transportation simulation technique will be developed to accurately predict the EV charging load and Vehicle-to-Grid (V2G) capability spatially and temporally; 2) A coordination planning model for the planning of the distribution system and charging facilities based on Collaborative Optimization (CO) will be studied, which consists of two subsystems. One is the optimal sit
英文关键词: Electric Vehicle;Charging Facilities;Distribution Network;Coordination Planning;Spatial-Temporal Distribution