3篇量子计算里程碑论文同登Nature封面:保真度超99%,达到实用化水平

2022 年 1 月 20 日 量子位
晓查 发自 凹非寺
量子位 | 公众号 QbitAI

今天的Nature期刊有些特殊,一共有3篇论文同时登上封面,实属罕见。

来自澳洲、荷兰、日本的3个不同团队,同时实现了硅量子计算的一个重要里程碑——

保真度超过99%

该结果与谷歌Sycamore量子计算机的2量子比特保真度达到同一水平。

这意味着,近乎无错误的硅量子计算是可以实现的。硅量子计算机与谷歌IBM的超导量子计算技术一样,是实现大型量子计算机的有力候选者。

“当错误如此罕见时,就有可能检测到它们,并在它们发生时进行纠正。这表明有可能建造具有足够规模和足够能力的量子计算机,来进行有意义的计算。”

3篇论文之一的通讯作者新南威尔士大学(UNSW)的Andrea Morello教授说。

 Andrea Morello教授

而且UNSW团队多年前已取得了另一项超过谷歌的成就:在硅量子系统中将信息保存了35秒

这一时长是谷歌和IBM量子计算机的100万倍,而后两者的超导量子计算机仅能将信息保存100微秒。

这3项研究在开发半导体量子计算机的路上迈出了极其重要的一步。他们证明了鲁棒的、可靠的量子计算机正在成为现实。

他们是如何做到的

以USNW团队的研究为例,为了保证量子系统的保真度,他们需要解决一个矛盾的问题:

那就是既要让量子比特尽可能“与世隔绝”,以长时间正确保存信息,还要使量子比特与外界相互作用,来执行对量子计算的操控。

原子核自旋能够相当好地与外界环境隔离,之前量子信息保存35秒就是在核自旋系统中实现的。

为何让自旋与外界相互作用,研究团队在两个磷原子核之间引入了一个电子。当两个核关联到一个电子时,就可以通过共有的电子进行交互。

 红色点表示磷原子核,外侧闪亮的椭圆代表电子

论文作者之一Serwan Asaad博士说:

如果您将核自旋与电子纠缠在一起,那么电子可以移动到另一个地方,并与更远地方的其他量子比特核纠缠在一起,从而开辟能够大量进行鲁棒和实用量子计算的道路。

而在硅材料中掺杂磷原子是半导体行业的基本操作(用于制造n型半导体),所以这项技术能与现在的计算机技术兼容。

最后,他们使用门集断层扫描(GST)技术精确地描述了量子操作,得出1量子比特的平均门保真度为99.95%,2量子比特平均门保真度为99.37%,2量子比特制备/测量保真度高达98.95%。

这三个指标表明,硅原子核自旋正在接近容错量子处理器所需的性能要求。

现在所有经典计算机都有某种形式的误差校正和数据冗余,但量子物理定律对量子计算机中的校正方式构成了严重限制。

论文通讯作者Morello说:

通常需要低于1%的错误率,才能应用量子纠错协议。现在已经实现这一目标,我们可以开始设计硅量子处理器,这些处理器可以可靠地扩展和运行,来进行有用的计算。

团队合作带来3篇论文

今天Nature封面的3篇论文分别实现了以下成果:

1、澳大利亚新南威尔士大学团队通过离子注入硅,在电子和两个磷原子组成的三量子比特系统上实现了1量子比特99.95%和2量子比特99.37%的保真度。

2、荷兰代尔夫特理工大学团队使用硅/硅锗合金量子点的电子自旋,实现了1量子比特99.87%和2量子比特99.65%的保真度。

3、日本RIKEN团队同样在使用硅/硅锗合金量子点的双电子系统,实现了1量子比特99.84%和2量子比特99.51%的保真度。

虽然各团队分别独立发表了实验结果,但是离不开他们之间广泛的学术交流,包括实验技术、材料、人员的相互流通。

 UNSW团队,从左至右分别为Asaad Serwan博士、
Andrea Morello教授和Mateusz Madzik博士
  • UNSW论文的一作Mateusz Mądzik博士,现在是代尔夫特团队的博士后;另一位Serwan Asaad博士原来是代尔夫特理工大学的学生。

  • 代尔夫特团队负责人Lieven Vandersypen曾2016年在UNSW进行了为期五个月学术休假访问。

  • RIKEN团队负责人Giordano Scappucci博士是UNSW的前研究员。

此外还有:

  • 代尔夫特理工大学和RIKEN组使用的硅/硅锗合金量子点都是由前者制作,并在两组之间共享。

  • UNSW团队使用的同位素纯化硅材料,则由日本庆应大学的Kohei Itoh教授提供。

  • 论文中关键的门集断层扫描(GST)方法,是由美国Sandia国家实验室开发并公开提供。

参考链接:
[1]
https://www.nature.com/nature/volumes/601/issues/7893
[2]https://www.nature.com/articles/s41586-021-04292-7
[3]https://www.nature.com/articles/s41586-021-04273-w
[4]https://www.nature.com/articles/s41586-021-04182-y
[5]https://newsroom.unsw.edu.au/news/science-tech/quantum-computing-silicon-hits-99-cent-accuracy

「智能汽车」交流群招募中!

欢迎关注智能汽车、自动驾驶的小伙伴们加入社群,与行业大咖交流、切磋,不错过智能汽车行业发展&技术进展。

ps.加好友请务必备注您的姓名-公司-职位哦~


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~


登录查看更多
0

相关内容

量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。对照于传统的通用计算机,其理论模型是通用图灵机;通用的量子计算机,其理论模型是用量子力学规律重新诠释的通用图灵机。从可计算的问题来看,量子计算机只能解决传统计算机所能解决的问题,但是从计算的效率上,由于量子力学叠加性的存在,目前某些已知的量子算法在处理问题时速度要快于传统的通用计算机。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
15+阅读 · 2022年3月18日
2021年中国量子计算应用市场研究报告
专知会员服务
38+阅读 · 2021年10月28日
专知会员服务
26+阅读 · 2021年6月25日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员