项目名称: 镧系氧化物疏水自清洁高功率激光薄膜研究

项目编号: No.61505209

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 邓淞文

作者单位: 中国科学院大连化学物理研究所

项目金额: 20万元

中文摘要: 氧碘化学激光器(COIL)的工作原理使得其谐振腔腔镜不可避免的受到含杂质高速液滴的污染。实际当中,腔镜表面强光薄膜使用的金属氧化物材料表现出亲水性。含杂质的小液滴到达元件表面后迅速铺展,造成大面积的污染,威胁到了元件的使用寿命和可靠性。这对强光光学薄膜提出了新的疏水自清洁特性的要求。传统的疏水自清洁材料和技术因其自身的特点无法应用于高功率激光薄膜领域。2013年,镧系金属氧化物被发现具有本征疏水性,使得具有疏水自清洁功能的高功率激光薄膜成为可能。但是到目前为止,镧系金属氧化物高功率激光薄膜的研究基本处于空白状态。因此,开展镧系金属氧化物疏水自清洁高功率激光薄膜研究具有重要的科学意义和应用价值。本项目提出研究镧系金属氧化物薄膜的电子束蒸发-离子束辅助沉积工艺,发展具有疏水自清洁功能的高功率激光薄膜,提高强光薄膜的服役环境适应性,为我国COIL的发展提供技术支撑。

中文关键词: 高功率激光薄膜;疏水自清洁;电子枪蒸发离子辅助沉积;激光损伤;谐振腔腔镜

英文摘要: Due to the working fundamental, the cavity mirror in COIL system is inevitably polluted by high speed water drops containing impurities. In practice, traditional cavity mirror deposited by metal oxides exhibits hydrophilic property. Thus, the small water drops expand immediately after arriving at the surface of cavity mirror, and cause a large area of pollution. This phenomenon jeopardizes the endurance and reliability of the cavity mirror in COIL system. To overcome the shortage, a cavity mirror with hydrophobic self-cleaning property is demanded. However, the traditional hydrophobic material and structure cannot be applied in high power laser coating area limited by their own features. Lanthanide oxides were found intrinsic hydrophobic in 2013, which made it possible to build high power laser coating with hydrophobic self-cleaning property. The study on high power lanthanide oxides coating is still left blank. Thus, the research of lanthanide oxide high power laser coating with hydrophobic self-cleaning property has significance on both science and application. Present project proposes to study the EB-IAD deposition technology of lanthanide oxide coating, aims to build high power laser coating with hydrophobic self-cleaning property and enhance the environment adaption of the coating system, and provide the technological support for the development of COIL system.

英文关键词: High power laser coating; Hydrophobic self-cleaning;EB-IAD;Laser damage;Resonating cavity mirror

成为VIP会员查看完整内容
0

相关内容

CVPR2022 | Sparse Transformer刷新点云目标检测的SOTA
专知会员服务
24+阅读 · 2022年3月9日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
数据资产管理实践白皮书(5.0版)
专知会员服务
52+阅读 · 2022年1月11日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
31+阅读 · 2021年5月7日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年7月31日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员