项目名称: 灰色新陈代谢预测模型与车用动力锂离子电池组SoC准确在线估计

项目编号: No.51267002

项目类型: 地区科学基金项目

立项/批准年度: 2013

项目学科: 电工技术

项目作者: 陈琳

作者单位: 广西大学

项目金额: 50万元

中文摘要: 为延长车用动力电池寿命,提高能量有效管理及车辆行驶安全,有必要准确估计动力电池组荷电状态(SoC),这也是整车电池管理系统的核心和难点。本项目旨在探究灰色新陈代谢预测模型理论,解决目前车用动力锂离子电池组SoC在线估计中的难题。拟在以下几个方面开展研究:(1)基于灰色新陈代谢模型,建立一种不依赖电池模型参数的SoC灰色预测模型;(2)基于灰色关联原理,定量分析影响SoC估计要素,建立电池单体/电池组的SoC多维灰色预测模型;(3)采用灰色Verhulst新陈代谢模型或灰色新陈代谢模型与马尔可夫链预测结合探究电池组SoC估计在恒放电倍率和变放电倍率下的预测模型。通过理论分析与仿真、实验验证对相关模型和算法进行优化,最终得到实用的嵌入式车用锂离子电池组的SoC准确在线估计模型,为车用动力锂离子电池组SoC的在线估计提供新思路。本项目的研究不但具有重要的科学研究意义,而且具有极高的工程应用价值。

中文关键词: 荷电状态;准确在线估计;灰色模型;车用动力电池;

英文摘要: In order to extend the life of vehicle power battery and to improve the efficient management of energy and vehicle safety, it is necessary to accurately estimate the power batteries' stage of charge (SoC), which is the core and the difficulty of the vehicle battery management system. The project aims to explore the application of grey metabolic prediction model theory to solve the problem in the SoC online estimates of power lithium-ion batteries for vehicles. The proposed research will be carried out in the following aspects. Firstly, a prediction model of SoC, that does not dependent on the cell model parameters, is intended to be built based on grey metabolic prediction model. Secondly, quantitative analysis of the influence factors of SoC estimates are undertook based on the grey relation principle, and then the SoC of multidimensional grey prediction model of cell/battery are established. Thirdly, the SoC estimates prediction models of batteries will be established under constant discharge C rate and varied discharge C rate. Here, the grey Verhulst metabolic model or the gray metabolic model combined with the Markov chain model is adopted to build these prediction models. Finally, the ultimate practical embedded of SoC accurate online estimate models are achieved for lithium-ion battery of vehicles, through

英文关键词: State of Charge;Accurate Online Estimation;Grey Model;power lithium-ion batteries of vehicles;

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
 100页!IEEE标准协会《脑机接口神经技术标准路线图》
专知会员服务
32+阅读 · 2022年2月13日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
51+阅读 · 2020年12月28日
【KDD2020】基于动态知识图谱的多事件预测
专知会员服务
57+阅读 · 2020年11月10日
【EMNLP2020-清华】基于常识知识图谱的多跳推理语言生成
专知会员服务
73+阅读 · 2020年9月25日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
61+阅读 · 2020年5月25日
如何用数据驱动活动,这篇文章告诉你
人人都是产品经理
0+阅读 · 2022年2月27日
能量,尽融于心:我们要怎么看待日产 e-POWER?
ZEALER订阅号
0+阅读 · 2021年10月9日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
【数字孪生】使用数字孪生体进行预测性维护
产业智能官
27+阅读 · 2019年7月22日
【数字孪生】九论数字孪生
产业智能官
57+阅读 · 2019年7月6日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关主题
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
 100页!IEEE标准协会《脑机接口神经技术标准路线图》
专知会员服务
32+阅读 · 2022年2月13日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
51+阅读 · 2020年12月28日
【KDD2020】基于动态知识图谱的多事件预测
专知会员服务
57+阅读 · 2020年11月10日
【EMNLP2020-清华】基于常识知识图谱的多跳推理语言生成
专知会员服务
73+阅读 · 2020年9月25日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
61+阅读 · 2020年5月25日
相关资讯
如何用数据驱动活动,这篇文章告诉你
人人都是产品经理
0+阅读 · 2022年2月27日
能量,尽融于心:我们要怎么看待日产 e-POWER?
ZEALER订阅号
0+阅读 · 2021年10月9日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
【数字孪生】使用数字孪生体进行预测性维护
产业智能官
27+阅读 · 2019年7月22日
【数字孪生】九论数字孪生
产业智能官
57+阅读 · 2019年7月6日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
微信扫码咨询专知VIP会员