项目名称: 小角散射在线观测超临界二氧化碳调控的嵌段共聚物相转变

项目编号: No.21306090

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 化学工业

项目作者: 包锦标

作者单位: 宁波大学

项目金额: 25万元

中文摘要: 如何利用简单、有效的方法去调控嵌段共聚物相转变,是制备高度有序纳米结构新材料的关键。现有的几种调控手段,如热退火、溶剂退火以及添加均聚物等,都有一定的局限。本项目利用超临界二氧化碳(scCO2)来调控嵌段共聚物的相转变,并采用小角X射线散射(SAXS)进行在线观测。主要研究scCO2对嵌段共聚物的三方面作用:1)利用scCO2塑化作用从动力学上促进有序-无序相转变,缩短形成有序分相结构的时间;2)利用scCO2在两相间的溶解度差异,改变体积分数(f)和两相相互作用参数,调控有序-有序相转变;3)利用scCO2发泡来显著改变f,从而大幅度调控有序-有序相转变,形成亚稳态的新型纳米分相结构。有机结合上述三种作用,可以有效调控嵌段共聚物在平衡态和非平衡态下的分相结构。本项目将阐明scCO2调控下的相转变机理,为发展嵌段共聚物纳米材料制备的绿色新工艺提供科学基础。

中文关键词: 超临界二氧化碳;嵌段共聚物;小角散射;phase transition;聚合物共混物

英文摘要: The key to prepare novel materials with well-defined nanostructures is to find a simple yet effective way to induce phase transitions of block copolymers (BCPs). Current methods, such as thermal annealing, solvent annealing, and homopolymer addition, have not yet met the above criteria. This project uses in-situ small angle X-ray scattering (SAXS) to monitor phase transitions of block copolymers induced by supercritical carbon dioxide (scCO2). Three different effects of scCO2 will be studied:1) plasticizing effect that facilitate a faster order-disorder transition kinetics and thus well-ordered phase structures; 2) solubility effect that changes the volume fraction and the interaction parameter of two blocks, thus induces order-order transition; and 3) foaming effect that drastically alter the volume fraction, thus induces a dramatic order-order transition and form a metastable nano-structures. By utilizing these three effects strategically, the phase structures of block copolymers at either equilibrium or non-equilibrium states could be easily controlled. This project should reveal the mechanisms of these scCO2-induced phase transitions, and develop a novel green technology for the preparation of fascinating arrays of BCP nano-structures.

英文关键词: supercritical CO2;block copolymer;small angle X-ray scattering;phase transition;polymer blends

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
55+阅读 · 2021年6月9日
专知会员服务
37+阅读 · 2021年5月9日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
【委员纳新】CSIG机器视觉专委会委员纳新!
CSIG机器视觉专委会
0+阅读 · 2018年7月11日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
10+阅读 · 2018年2月17日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
55+阅读 · 2021年6月9日
专知会员服务
37+阅读 · 2021年5月9日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
【委员纳新】CSIG机器视觉专委会委员纳新!
CSIG机器视觉专委会
0+阅读 · 2018年7月11日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
1+阅读 · 2022年4月19日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
10+阅读 · 2018年2月17日
Arxiv
12+阅读 · 2018年1月12日
微信扫码咨询专知VIP会员