项目名称: 基于空间像矢量分析的偏振像差在线检测与像质优化方法

项目编号: No.61275207

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 王向朝

作者单位: 中国科学院上海光学精密机械研究所

项目金额: 72万元

中文摘要: 光刻是集成电路制造的核心工艺,光刻分辨率的不断提高推动着集成电路向着更小线宽尺寸发展。随着半导体制造向22nm及以下节点推进,偏振像差成为影响光刻分辨率的新的重要因素。为保证光刻图形的高保真转移,既需要组合运用多种分辨率增强技术,通过优化光刻工艺保证光刻系统成像性能达到最优;又需要发展高精度的光刻过程在线检测技术,精密监测各种光刻过程参数的变化并对其进行在线校正。本项目拟基于严格矢量光刻仿真模型,研究移相掩模的矢量成像效应,基于掩模空间像的矢量效应提出一种偏振像差的在线检测方法,在此基础上,通过深入分析超大数值孔径光刻成像条件下投影物镜偏振像差对照明和掩模等分辨率增强技术的影响机制,提出一种基于掩模、照明、投影物镜联合优化的光刻分辨率增强方法。

中文关键词: 光刻;矢量成像理论;偏振像差检测;分辨率增强技术;

英文摘要: Optical lithography is a key process in semiconductor device fabricating which is constantly driving the manufacturable critical dimension(CD) of integrated circuits(IC). Now IC manufacturing process is advancing down to CD of 22 nm or less. Polarization aberration of projection lens becomes a more important factor which has a notable impact on lithography imaging resolution. To ensure the high-fidelity of mask pattern transfering in optical lithography process, combining all kinds of resolution enhancement technique and development of in situ high precision metrology are required to improve the optical imaging contrast and monitor the process variations. In this application we will investigate the vectoring imaging effect of phase shift mask in high numerical aperture(NA) optical lithography system which will provide a theoretical model for the aerial imaging simulation and analysis. Based on aerial image sensing we will develop an in situ polarization aberration measurement method. Furthermore, we will propose a resolution enhancement technique with source and mask optimization to compensate for the polarization aberration of projection lens in high NA optical lithography system.

英文关键词: Optical lithography;Vectorial imaging theory;Polarization aberration measurement;Resolution enhancement techniques;

成为VIP会员查看完整内容
0

相关内容

基于对比调整缩放的图自监督学习
专知会员服务
8+阅读 · 2022年4月6日
专知会员服务
84+阅读 · 2021年9月4日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
16+阅读 · 2021年7月31日
专知会员服务
62+阅读 · 2021年7月25日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
17+阅读 · 2021年5月16日
专知会员服务
29+阅读 · 2021年1月9日
【KDD2021】基于生成对抗图网络的不平衡网络嵌入
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
基于对比调整缩放的图自监督学习
专知会员服务
8+阅读 · 2022年4月6日
专知会员服务
84+阅读 · 2021年9月4日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
16+阅读 · 2021年7月31日
专知会员服务
62+阅读 · 2021年7月25日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
17+阅读 · 2021年5月16日
专知会员服务
29+阅读 · 2021年1月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员