项目名称: 精确控制液膜破裂与纳米粒子图案化组装研究

项目编号: No.51473173

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 宋延林

作者单位: 中国科学院化学研究所

项目金额: 88万元

中文摘要: 纳米粒子的有序组装是连接单个纳米粒子功能化和实现微型光电器件制备的桥梁。针对目前各种组装纳米粒子的研究方法仍然存在组装类型单一、组装过程复杂、组装位点随机等不足,本项目从构筑控制液膜破裂的微精细结构、调控纳米粒子在液膜中的组装行为两方面,提出对纳米粒子图案化可控组装的新思路。通过设计一种精确控制液膜破裂的微精细结构模板,系统研究结构中的图案组成、基材表面的浸润性以及液膜的表面张力、粘度对液膜破裂过程的影响;进一步研究不同类型的纳米粒子随着液膜破裂在微精细结构中的组装行为,实现纳米粒子的简单、快速、大面积图案化组装;并基于上述两方面的结果,研究功能性纳米粒子在图案化可控组装后在光学、电学、磁学等领域的潜在应用。本项目的研究将为利用纳米粒子组装实现微型纳米光电功能器件的制备提供理论和技术基础,具有重要的科学意义和应用前景。

中文关键词: 液膜破裂;精确控制;纳米粒子;组装;图案化

英文摘要: Ordered assembly of nanoparticles is the bridge to connect the functionalization of single nanoparticle and the realization of fabricating micro-photoelectric. However, many problems such as assembly with single kind of nanoparticles, complex assembly process and random assembly sites still generally exist in existing methods of nanoparticle assembly. This study constructs a micro-fine structure to control the liquid film rupture and the nanoparticles assembly in the liquid film, which puts forward a new idea about the patterned assembly of nanoparticles. The influences of the micro-fine structure, the liquid film's surface tension and viscosity impact on the process of liquid film rupture are systemically studied. Furthermore, the assembly behavior of different types of nanoparticles with the liquid film rupture in micro-fine structure is also studied. The large scale patterned assembly of different nanoparticles wil be realized rapidly and facilely. Subsquently, controllable assembly patterns of functional nanoparticles will be applied in the fields of optics, electricity, and magnetism. This study will provide theoretical and technical basis for the fabrication of micro-nano functional photoelectric devices, which not only has important science meaning but also owns promising applications.

英文关键词: liquid film rupture;precise control;nanoparticles;assembly;pattern

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
专知会员服务
61+阅读 · 2021年8月4日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
38+阅读 · 2021年2月8日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
当 AI 遇上合成生物,人造细胞前景几何?
机器之心
0+阅读 · 2022年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关主题
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
专知会员服务
61+阅读 · 2021年8月4日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
38+阅读 · 2021年2月8日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员