项目名称: 基于胶体量子点的高效率白光混合LED的研究

项目编号: No.61274002

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 程刚

作者单位: 吉林大学

项目金额: 80万元

中文摘要: 青年基金的前期研究证实了磷光敏化可有效地提高基于量子点发光的混合LED的性能,同时,有机磷光材料到量子点的能量转移强烈依赖于前者的分子构型。因此,本项目拟对磷光材料到量子点的能量转移进行更深入的研究并实现定量测量;拟通过对量子点配体交换的研究合成量子点-磷光材料或量子点-聚合物材料。前者可用来定量研究磷光材料到量子点的能量转移和直接用作混合LED的发光材料;后者可以用来解决发光层中的主体和量子点的相分离问题,从而提高器件的色纯度和效率。量子点的大分子量决定了这种材料只能采用溶液法成膜,为了将真空沉积形成的载流子传输层与溶液法形成的发光层相结合,我们拟采用微接触印刷技术。其关键是均匀致密的量子点薄膜的形成, 在本项目中我们拟采用逐层沉积技术实现。除了用作形成量子点薄膜,逐层沉积技术还可用作构筑交替的量子点和磷光材料的单分子层以定量测量二者之间的能量转移。

中文关键词: 金属配合物;量子点;有机发光器件;白光器件;高效率

英文摘要: Results from the previous project have demonstrated that phosphorescent sensitization can effectively improve performances of hybrid light-emitting devices (LEDs) based on the emission of quantum dots (QDs). Meanwhile, energy transfer (ET) from organic phosphorescent dyes (PDs) to QDs strongly depends on the molecular structure of PDs. Therefore, we plan to study the ET between PDs and QDs more deeply to further understand its mechanisms and quantitatively measure its F?ster radii. We also plan to investigate the ligand exchange of QDs to synthesize QD-PD materials and QD-polymer materials. The former could be used to quantitatively measure F?ster radii of ET between QDs and PDs and to fabricated hybrid LEDs as emitting materials. The latter could be used as a single emitting material without phase separation during the fabrication to fabricate hybrid LEDs with high performances. Since solution process is necessary to deposit QD-films due to the large molecular weight of QDs, it is essential to combine the solution processed QD-emission-film with the vacuum deposited charge-transporting layers for the fabrication of hybrid LEDs with multilayer structure. In this project, we plan to achieve this goal by using micro-contact printing technology. The key process of this technology is the formation of smooth close-pa

英文关键词: Metal complexes;Quantum dots;Organic light-emitting devices;White-emitting devices;High efficiency

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
CIKM2021 | CD-GNN:一种跨领域的图神经网络模型
专知会员服务
28+阅读 · 2021年11月9日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月28日
专知会员服务
29+阅读 · 2021年1月9日
深度学习模型终端环境自适应方法研究
专知会员服务
33+阅读 · 2020年11月13日
基于深度学习的表面缺陷检测方法综述
专知会员服务
85+阅读 · 2020年5月31日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
北大新技术:利用WiFi设备进行人体行为识别!
全球人工智能
12+阅读 · 2018年2月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
CIKM2021 | CD-GNN:一种跨领域的图神经网络模型
专知会员服务
28+阅读 · 2021年11月9日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月28日
专知会员服务
29+阅读 · 2021年1月9日
深度学习模型终端环境自适应方法研究
专知会员服务
33+阅读 · 2020年11月13日
基于深度学习的表面缺陷检测方法综述
专知会员服务
85+阅读 · 2020年5月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员