项目名称: 刚性模板纳米切割方法制备大面积聚合物半导体纳米结构及在有机电子器件加工中的应用

项目编号: No.51273009

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 王哲

作者单位: 北京航空航天大学

项目金额: 80万元

中文摘要: 聚合物半导体纳米结构能够有效地消除晶界,减少电荷陷阱密度,极大地提高器件性能。同时将纳米结构与器件制备相结合,还可以满足对器件小型化和集成化的要求。本项目在纳米压印技术基础上提出了一种制备大面积分离的有机聚合物半导体纳米结构的新方法-纳米切割。从有机聚合物半导体材料种类和薄膜厚度、刚性模板的形状和尺寸、切割过程压力、温度和速度,以及聚合物基底流动性作用四个方面入手,研究有机聚合物半导体层的在刚性模板切割过程中的断裂力学过程,建立纳米切割理论模型。此方法还可以用于构筑了由多种材料组成的异质纳米结构,如聚合物/金属,聚合物/聚合物等多层纳米结构。同时本研究将利用有限元方法对纳米切割过程进行仿真模拟,找出影响纳米切割效果的主要因素,为实验过程优化提供理论指导。最后将发展的纳米切割方法应用于高性能有机光电器件的制备,为发展适宜于未来塑性器件卷帘式加工提供新思路。

中文关键词: 纳米切割;溶剂蒸汽辅助微/纳米切割;高温熔融纳米切割;微/纳米结构;有机电子器件

英文摘要: Polymeric semiconductor nanostructures can effectively eliminate the grain boundary, reduce the charge trap density, and greatly improve the device performance. A combination of nano structure and device fabrication can meet requirements of the miniaturization and integration of the device. Based on nanoimprint lithography, a new method for preparation large area separated polymeric semiconductor nanostructure was proposed in our project. From four aspects of polymeric semiconductor and thickness of film, shape and pattern size of rigid master, pressure\temperature and velocity in nanoscale cutting, viscous of polymer substrate, we analyses fracture mechanics of polymeric semiconductor film when comprises master into a polymer multilayer structure and established the nanoscale cutting model. The hybrid nanostructure, such as polymer/metal and polymer/polymer, also can be prepared by nanoscale cutting. This research will also analyze and discuss nanoscale cutting with the finite element methods for the preparation of highly oriented and stable polmer nanostructure. And the development of nanoscale cutting method is applied to preparation of high-performance organic electronic devices, suitable for the development of plastic devices in the future roll-curtain processing providing new ideas.

英文关键词: Nanoscale cutting;Solvent vapor assisted micro/nanoscale cutting;High temperature nanoscale cutting;Micro/nanostructure;Organic electronic devices

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
基于流线的流场可视化绘制方法综述
专知会员服务
25+阅读 · 2021年12月9日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年8月5日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
23+阅读 · 2021年4月21日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
51+阅读 · 2020年12月28日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
基于流线的流场可视化绘制方法综述
专知会员服务
25+阅读 · 2021年12月9日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年8月5日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
23+阅读 · 2021年4月21日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
51+阅读 · 2020年12月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员