项目名称: 基于含氟聚苯胺基纳米复合材料的室温高灵敏NO2气敏传感器研究

项目编号: No.61306018

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 汪元元

作者单位: 上海交通大学

项目金额: 27万元

中文摘要: 来源于汽车尾气和火电厂的含氮氧化物NOx是主要的大气污染物之一。目前主要通过将NOx的各种成分全部催化氧化成NO2,再利用昂贵复杂的Saltzman法或化学发光法来测定NO2浓度从而计算NOx浓度。研究价格低廉、简便实用的NO2气体化学传感器对于环境监测具有重要意义。与传统的无机氧化物半导体气敏材料相比,共轭高分子气敏传感器具有工作温度低、能耗低、常温常压下可逆性好、可微型化设计等优点,但存在长期环境稳定性差、易受空气中湿度干扰等缺点。本研究工作首先合成具有较高稳定性、抗湿度干扰的含氟聚苯胺纳米纤维气敏材料,揭示含氟聚苯胺形貌、氟含量等对NO2响应特性的影响规律;通过与纳米碳材料复合以及氧化物纳米晶修饰优化材料对NO2响应特性,揭示碳材料与共轭分子链之间的共轭效应以及纳米晶修饰含氟聚苯胺形成的异质结对NO2气体响应特性协同效应机理。制成5 ppm以下NO2气体检测的传感器元件。

中文关键词: 二氧化氮;含氟聚苯胺;纳米复合材料;气敏特性;

英文摘要: Nitrogen oxides NOx generated from automobile exhaust and thermal power plant is one of the major atmospheric pollutants. Up to now, the NOx concentration is determined by firstly catalytic oxidizing all the components of the NOx into NO2, and then testing the NO2 concentration by expensive and complex Saltzman method or chemical luminescence method. It is of great significance to develop simple and practical NO2 gas chemical sensors for environmental monitoring. Comparing with traditional inorganic oxide semiconductor material, conjugated polymer gas sensor has the advantages of low work temperature, low energy consumption, good reversibility under ambient temperature and pressure, as well as easy to miniaturized design. However, it also has the disadvantages of poor long-term environmental stability for and vulnerable to air humidity. In this work, the fluorinated polyaniline nanofibers with higher stability and resistance to humidity will be firstly synthesized. The influence of the morphology, the fluorine content of the polymer on the response characteristics to NO2 will be explored. The response characteristics to NO2 will be optimized by preparing fluorinated polyaniline-nanocarbon composites or modified by metal oxide nanocrystallines. The influence of the conjugated effects between polymers and carbon a

英文关键词: nitrogen dioxide;fluorinated polyaniline;nanocomposite;nanocomposite;gas sensing properties;

成为VIP会员查看完整内容
0

相关内容

重磅!819页pdf《动⼿学深度学习 Release 2.0.0-beta0》2022版
专知会员服务
402+阅读 · 2022年2月16日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
83+阅读 · 2021年8月8日
《动⼿学深度学习》最新版,605页pdf
专知会员服务
160+阅读 · 2021年7月31日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
是什么原因让你不想换手机?
ZEALER订阅号
0+阅读 · 2022年2月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
38+阅读 · 2020年3月10日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
25+阅读 · 2018年8月19日
小贴士
相关VIP内容
重磅!819页pdf《动⼿学深度学习 Release 2.0.0-beta0》2022版
专知会员服务
402+阅读 · 2022年2月16日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
83+阅读 · 2021年8月8日
《动⼿学深度学习》最新版,605页pdf
专知会员服务
160+阅读 · 2021年7月31日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员