项目名称: 湿法球磨机负荷自适应选择性集成模型研究

项目编号: No.61203102

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 赵立杰

作者单位: 沈阳化工大学

项目金额: 26万元

中文摘要: 球磨机负荷是选矿生产最关注参数信息,同时也是磨矿过程控制关键因素之一。本项目将研究湿法球磨机特性漂移时磨机负荷测量模型精度和工业适应度问题,拟利用灵敏度高、抗干扰性强的球磨机筒壁振动信号,采用集合经验模态分解(EEMD)和互信息方法提取非线性非平稳筒壁振动信号本征模态函数(IMFs)中蕴含的丰富磨机负荷参数信息。通过IMFs特征选择和优化技术,研究基于本征模态特征的自适应选择性集成建模方法,具体包括:(1)集合成员模型尺寸控制算法;(2)基于线性依赖条件(ALD)的集合成员模型局部增量学习算法和(3)集成模型的元学习自适应权值更新稳定学习算法,以保证过程漂移时测量模型误差最终收敛到稳定。基于EEMD本征模态特征的自适应选择性集成建模方法是改善磨机负荷测量模型泛化性、可信度和适应性的有效手段,该问题的研究进展将对磨矿过程控制和磨机负荷在线仪表开发和维护产生直接、深远的影响。

中文关键词: 球磨机负荷;软测量;集合经验模态分解;选择性集成建模;自适应学习

英文摘要: Ball mill load, as the most important parameter information in the mineral processing, is one of the key factors for the control and optimization of the grinding process. The main content of this project focuses on the accuracy and adaptability of the mill load model in the industrial process with characteristic drift of the wet ball mill system. Based on the high sensitivity and less disturbance shell vibration signal, ensemble empirical mode decomposition (EEMD) and mutual information technology are used to extract the rich mill load parameter information from the intrinsic modes functions (IMFs) of the nonlinear and nonstationary shell vibration signal. An adaptive selective ensemble model of mill load based on the features of IMFs will be studied under the ensemble architecture. In order to keep the convergence of the soft sensor model error with the characteristic drift ball mill process, the following algorithm based on the feature selection and optimization technology are studied: (1) component size control algorithm of the ensemble model; (2) local increment learning algorithm based on the approximate linear condition (ALD) and (3) meta-learning adaptive weighting coefficients updating algorithm based on the stability learning. With constructed adaptive selective ensemble models based on the intrinsic mo

英文关键词: Ball Mill Load;Soft Sensor;Ensemble Empirical Mode Decomposition;Selective Ensemble;adaptive learning

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
专知会员服务
13+阅读 · 2021年10月13日
专知会员服务
20+阅读 · 2021年8月17日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
11+阅读 · 2021年6月20日
专知会员服务
15+阅读 · 2021年6月6日
《Golang修养之路》干货书
专知会员服务
33+阅读 · 2021年5月8日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
基于自监督的可逆性强化学习方法
AI前线
4+阅读 · 2021年12月3日
【干货】GAN最新进展:8大技巧提高稳定性
GAN生成式对抗网络
31+阅读 · 2019年2月12日
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
ISI新研究:胶囊生成对抗网络
论智
18+阅读 · 2018年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Chinese Idiom Paraphrasing
Arxiv
0+阅读 · 2022年4月15日
Arxiv
23+阅读 · 2017年3月9日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
专知会员服务
13+阅读 · 2021年10月13日
专知会员服务
20+阅读 · 2021年8月17日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
11+阅读 · 2021年6月20日
专知会员服务
15+阅读 · 2021年6月6日
《Golang修养之路》干货书
专知会员服务
33+阅读 · 2021年5月8日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
基于自监督的可逆性强化学习方法
AI前线
4+阅读 · 2021年12月3日
【干货】GAN最新进展:8大技巧提高稳定性
GAN生成式对抗网络
31+阅读 · 2019年2月12日
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
ISI新研究:胶囊生成对抗网络
论智
18+阅读 · 2018年3月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员