项目名称: 基于蜂窝基站轨迹数据挖掘的语义化位置感知计算研究

项目编号: No.61202282

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 计算机科学学科

项目作者: 吕明琪

作者单位: 浙江工业大学

项目金额: 23万元

中文摘要: 轨迹数据挖掘是提高位置感知计算智能化程度和交互效率的有效途径。然而,现有轨迹数据挖掘工作存在两方面问题:第一,现有工作主要基于精确轨迹数据(如GPS轨迹数据),缺乏面向高不确定性的蜂窝基站轨迹数据的挖掘算法研究;第二,现有工作主要针对运动规律,未挖掘出轨迹数据中隐含的大量深层次用户语义信息(如目的意图、生活习惯、社会关系等),导致难以准确估计用户状态和推断用户需求。针对以上问题,本项目提出基于蜂窝基站轨迹数据挖掘的语义化位置感知计算方法。研究适应蜂窝轨迹数据高不确定性的数据抽象方法和数据挖掘算法,从目的、行为、关系三方面对基于轨迹数据挖掘的用户语义推理技术进行研究,探索用户语义对信息适应的影响机制以及面向语义化位置感知应用的交互设计方法。为实现普适计算环境下智能、自然和高效的位置感知计算,促进其在电子服务、智能交通、环境智能、数字娱乐等领域中的应用提供理论依据和技术基础。

中文关键词: 普适计算;位置感知计算;轨迹数据挖掘;蜂窝轨迹数据;用户语义推理

英文摘要: Trajectory data mining is regarded as an effective approach to improve the intelligence level and interaction efficiency for location-aware computing. However, there are two problems with the existing works. First, most of the existing works are based on precise trajectory data (e.g. GPS trajectory data), and there lacks the research about the algorithms for mining highly imprecise cellular trajectory data. Second, the existing works mostly focus on mobility regularity mining, and have not extracted the implicit personal semantic information (e.g. intention, living habits, social relations, etc.). As a result, it is very difficult to accurately estimate users' condition and infer users' demand. Aiming at these problems, this project proposes the semantic location-aware computing based on cellular trajectory data mining. This project will research on the data abstraction approaches and data mining algorithms which can adapt to the high uncertainty of the cellular trajectory data, and the user semantics inference techniques based on trajectory data mining from three aspects (i.e. intention, behavior and relation). The influence mechanism of user semantics on information adaptation and the interaction design approach for semantic location-aware applications will also be investigated. The final object of this projec

英文关键词: pervasive computing;location-aware computing;trajectory data mining;cellular trajectory data;user semantics inference

成为VIP会员查看完整内容
0

相关内容

《面向6G的数字孪生技术》未来移动通信论坛
专知会员服务
71+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
43+阅读 · 2022年3月21日
【博士论文】推荐系统多行为建模与隐私保护研究
专知会员服务
53+阅读 · 2021年11月27日
专知会员服务
38+阅读 · 2021年9月8日
专知会员服务
22+阅读 · 2021年4月1日
专知会员服务
52+阅读 · 2020年12月19日
最新【图神经网络计算】2020综述论文,23页PDF
专知会员服务
193+阅读 · 2020年10月3日
【北京大学】面向5G的命名数据网络物联网研究综述
专知会员服务
38+阅读 · 2020年4月26日
5G+智能时代的多模搜索技术
专知
0+阅读 · 2021年4月1日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
网络安全态势感知
计算机与网络安全
26+阅读 · 2018年10月14日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关VIP内容
《面向6G的数字孪生技术》未来移动通信论坛
专知会员服务
71+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
43+阅读 · 2022年3月21日
【博士论文】推荐系统多行为建模与隐私保护研究
专知会员服务
53+阅读 · 2021年11月27日
专知会员服务
38+阅读 · 2021年9月8日
专知会员服务
22+阅读 · 2021年4月1日
专知会员服务
52+阅读 · 2020年12月19日
最新【图神经网络计算】2020综述论文,23页PDF
专知会员服务
193+阅读 · 2020年10月3日
【北京大学】面向5G的命名数据网络物联网研究综述
专知会员服务
38+阅读 · 2020年4月26日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员