项目名称: 单壁碳纳米管作用于脑微血管内皮细胞的原子力显微术研究

项目编号: No.21305024

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 师晓丽

作者单位: 国家纳米科学中心

项目金额: 25万元

中文摘要: 纳米生物效应与安全性是纳米技术可持续发展的核心。目前已发现大量复杂的毒理学现象,但机制不清是该领域存在的一个突出问题。纳米材料特殊的物理化学性质,使得其进入生命体后,与生命体产生的生物效应较化学成分相同的常规物质有着明显的不同。纳米材料生物效应归根结底是主要研究纳米材料与生物系统界面之间的相互作用。其相互作用的第一环节是细胞膜。本题以单壁碳纳米管与脑微血管内皮细胞的相互作用为研究体系,利用原子力显微镜技术,结合其他显微成像方法对不同尺寸,不同电荷和表面修饰的单壁碳纳米管与细胞膜相互作用进行研究。首先通过原子力显微镜成像与力谱技术对不同性质碳管作用于细胞后,对其细胞膜结构及细胞本身粘弹性质进行探讨,探索纳米材料对生物体系的微环境和功能的影响和调控。其次,通过原子力显微镜单分子力谱结合荧光成像,研究碳管与细胞膜的相互作用及细胞内吞作用能力和内吞机制。

中文关键词: 金纳米颗粒;细胞膜;原子力显微镜;纳米生物效应;

英文摘要: Characters):Nanobiological effects and nanosafety is the core of sustainable development of nanotechnology. But so far, one of the outstanding problems is that the discovery of a complex series of toxicology, but the mechanism is still unclear.Because of special physicochemical properties of nanomaterials, when they are into the living body, the biologcial effects are very different compared with the bulk phase. The study of the biologcial effects of nanomaterials is actually to study the interactions between nanomaterials and biologcial system interface. And the first one is cell membrane. We here focus on the study of the interaction between single carbon nanotube and brain microvascular endothelial cells membrane using atomic force microsocopy in combination with other microscopic imaging methods. First, we study the effects of membrane morpholgy and cell elasticity by SWCNT by AFM fast imaging and force curve methods to explore the effects and regulations of cell microenviroment and function by nanomaterials. Then, we use AFM single molecular force curve to study the interation force between SWCNT and cell membrane.

英文关键词: gold nanoparticles;cell membrane;atomic force microscopy;biological effect;

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
135+阅读 · 2021年9月20日
几何深度学习分子表示综述
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
18+阅读 · 2019年11月21日
可对药物分子进行表征的几何深度学习
机器之心
0+阅读 · 2022年2月6日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
135+阅读 · 2021年9月20日
几何深度学习分子表示综述
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
18+阅读 · 2019年11月21日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员