项目名称: 高原颅脑撞击伤的力学响应研究
项目编号: No.31470913
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 生物科学
项目作者: 赵辉
作者单位: 中国人民解放军第三军医大学
项目金额: 80万元
中文摘要: 随着我国高原地区经济活动和各类人群增多,高原颅脑撞击伤的危害正日益严重。颅脑撞击伤的本质是力学响应,即颅脑对外力响应变形,超过组织、细胞耐受极限,引起其结构或功能损害。高原人群因颅脑结构和功能缺氧代偿,颅脑撞击伤的力学响应特性随之变化,使得高原颅脑撞击伤防护和救治需要相应策略,但我国尚缺相关研究。为研究高原不同人群颅脑撞击伤的力学响应特性,本课题拟饲养出多种缺氧程度的高原动物;进行高原动物脑组织材料力学实验,研究高原生物脑组织力学特性;开展高原颅脑撞击伤动物实验,用有限元模型计算颅脑损伤的组织应力,研究脑组织应力与颅脑损伤的量效关系,结合典型高原颅脑损伤深度分析,建立并验证高原颅脑撞击伤的损伤阈值;研究高原颅脑撞击伤的力学协同效应,进一步明确高原颅脑损伤的病生变化,结合高原颅脑损伤病例分析,建立高原颅脑损伤的疾病谱。实施本项目对促进高原颅脑撞击伤的防护和救治研究有重要作用。
中文关键词: 颅脑损伤;力学响应;缺氧代偿;阈值;协同效应
英文摘要: With an increase of economical action and crowded varied population in high altitude in China, brain impact injuries have resulted in great harm to the health of people in the areas more and more.The intrinsic character of brain impact injury is mechanical response, namely brain deformation, stresses, in response to the external mechanical stimulation, exceeding the injury tolerance of tissue and cell, and the leading to injury to its structure and function. The characters of mechanical response of brain injury may change,with the change of the structure and function of brain of populations in high altitude owing to hypoxia compensation, causing prevention and treatment for the brain impact injury to need the corresponding strategy. The study, however, concerning brain injury in high altitude has lacked. The purpose of the project, therefore, is to investigate the characters of mechanical response of varied population in high altitude. Before conducting the experiments, the anoxic animals mimicing varied population in high altitude will be fed. The investigation to test brain tissue material property will be carried out using the animals. Then brain impact experiment will be performed, and stress of brain tissue in the experiment will be acquired via computer simulation with finite element model. The relationship between stress and injury will be studied, and then brain injury tolerace will be developed. To valide the threshold, the in-depth analysis for brain injuries in high altitude will be done. The mechanical synergistic effect of brain injury based on the animal experiment will be researched, so that the changes of pathophysiology will be studied detailedly. Combining the study above and epidemiological study for brain injuries, the spectrum of disease resulted from brain injuries in high altitude will be built. The execution on the project will promote the study for prevetion and treatment of brain impact injury in high altitude.
英文关键词: Brain Injury;Mechanical Response;Hypoxia Compensation;Tolerance;Synergistic Effect